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a b s t r a c t

In this paper, we discuss the numerical treatment of three-dimensional mixture models
for (semi-)dilute and concentrated suspensions of particles in incompressible fluids. The
generalized Navier–Stokes system and the continuity equation for the volume fraction of
the disperse phase are discretized using an implicit high-resolution finite element scheme,
and maximum principles are enforced using algebraic flux correction. To prevent the
volume fractions from exceeding the maximum packing limit, a conservative overshoot
limiter is applied to the converged convective fluxes at the end of each time step. A
numerical study of the proposed approach is performed for 3D particulate flows over a
backward-facing step and in a lid-driven cavity.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Flows of incompressible fluids carrying suspensions of rigid particles occur very commonly in science, nature, and
technology. Due to the complexity of mechanisms that govern fluid–particle and particle–particle interactions, numerical
simulation of such flows belongs to the most challenging problems in Computational Fluid Dynamics (CFD). The
heterogeneous nature of disperse two-phase flows has engendered a hierarchy of models that cover the whole range of
relevant scales and differ greatly in their complexity.

In this paper, we consider averaged continuum models in which the effective density and viscosity of the mixture
depend on the local volume fraction of the disperse phase [1,2]. In the dilute regime, we use an analog of the Boussinesq
approximation for natural convection flows. The numerical implementation of the presentedmixture model is based on the
methodology we developed in [3] for buoyancy-driven turbulent bubbly flows.

When it comes to simulating dense suspensions, it is essential to ensure that the volume fraction of the disperse phase
is bounded above. A typical model for dense suspensions incorporates an interparticle stress term designed to keep the
particle volume fraction below the close-packing value [4–6]. Leiderman and Fogelson [7] multiplied the convective flux by
a monotonically decreasing function of the volume fraction to impair the ability of particles to move into regions packed
with other particles.

The flux-corrected transport (FCT) algorithm proposed in [8] combines the idea of Leiderman and Fogelson [7] with
algebraic flux correction [9]. Instead of modifying the convective flux at the continuous level, we decompose the discretized
convective term into numerical fluxes and limit the magnitude of these fluxes so as to get rid of unrealistic maxima. The
advantages of constraining the discrete solution in thisway are twofold. First, there is no need for tuning any free parameters
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or choosing the ‘right’ damping function for the convective flux. Second, the employed limiting strategy does not prevent
the particles from leaving the regions of maximum concentration.

In the original publication [8],we applied the overshoot limiter to a 2D implosion problemwith a prescribed velocity field.
In the present paper, we use the same strategy to enforce themaximumprinciple for volume fractions in 3Dmixturemodels
of particulate flows. The numerical results for two test problems (backward-facing step and lid-driven cavity) illustrate the
ability of the proposed scheme to handle dilute and concentrated suspensions.

2. Mixture model

In mixture models of disperse two-phase flows, the velocity u and pressure p of the suspension are given by the
incompressible Navier–Stokes equations

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ · (2µD(u)) + ρg, (1)

∇ · u = 0, (2)

where ρ is the effective density, D(u) =
1
2 (∇u + ∇uT ) is the strain rate tensor, µ is the effective viscosity, and g is the

gravitational acceleration.
The hydrodynamic behavior of the mixture depends on the local volume fraction α of the disperse phase. In the fully

Eulerian modeling framework, the evolution of α is governed by the hyperbolic continuity equation

∂α

∂t
+ ∇ · (αup) = 0, (3)

where up is the average velocity of the particles. The average velocity of the fluid phase is denoted by uf . The relative velocity
ur = up −uf is known as the slip velocity, settling velocity, or sedimentation velocity. It can be determined using empirical
correlations (see below).

The effective density and momentum of the mixture are given by [10]

ρ = (1 − α)ρf + αρp, (4)

ρu = (1 − α)ρf uf + αρpup, (5)

where ρp is the density of the solid and ρf is the density of the fluid. It follows that up can be expressed in terms of u and ur
as follows [1]:

up = u +
1 − α

1 + αΘ
ur , Θ =

ρp

ρf
− 1.

The model is closed by problem-dependent constitutive laws for ur and µ.

3. Boussinesq approximation

In the dilute flow regime, the mixture behaves as a weakly compressible fluid and can be modeled using an analogy to
the Boussinesq approximation for natural convection flows. The use of this approach in the context of disperse two-phase
flow modeling goes back to the work of Lapin and Lübbert [11] and Sokolichin et al. [12,13]. As shown by Lalli [2], it is well
suited for simulating dilute suspensions of particles in incompressible fluids.

Using ρ ≈ ρf in the left-hand side of the momentum equation (1) and the constant effective viscosity µ ≈ µf in the
right-hand side, one obtains

ρf


∂u
∂t

+ u · ∇u


= −∇p + µf 1u + ρf g + α(ρp − ρf )g.

Division by the constant density ρf yields the Boussinesq-like model [2]

∂u
∂t

+ u · ∇u = −∇p̃ + νf 1u + αΘg, (6)

∇ · u = 0. (7)

The kinematic viscosity νf and modified pressure p̃ are defined by

νf =
µf

ρf
, ∇p̃ =

1
ρf

∇p − g.
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