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element face. In this work, we provide details of converting a space-time flux expressed
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interface. We then demonstrate a generalized solution procedure for linearized hyperbolic
systems based on diagonalization of the governing system of partial differential equations.
The generalized procedure is particularly useful for the implementation aspects of coupled
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1. Introduction

Riemann solvers or approximate Riemann solvers are commonly used in control volume based numerical methods, e.g.
finite volume methods and discontinuous Galerkin methods [1-3]. Spacetime discontinuous Galerkin (SDG) methods, as
described in [4-14], are one such numerical method where Riemann solutions (or Riemann fluxes) are needed on inter-
elemental boundaries. In this paper, we provide the details of the Riemann solution process as we have used it in [4-9]. A
key component of the procedure is transforming the differential forms formulation into a local coordinate system in order to
solve the standard Riemann problem in the normal direction. The Riemann solution procedure itself is not novel; the basic
procedure can be found in articles [15] or textbooks [1,16]. The usefulness of our current exposition lies in clarifying the
transition from differential forms in spacetime to a one dimensional Riemann problem, and calculating the exact Riemann
flux. The general procedure we develop can be applied to systems of hyperbolic equations, and it is not restricted to SDG
methods. In addition, our semi-analytic solution structure is particularly useful for the derivation and implementation of
the Riemann solutions for complicated multiphysics problems, as shown in Section 4.3 on generalized thermoelasticity.

We use differential forms and the exterior calculus on manifolds to formulate systems of hyperbolic equations and
express fluxes across spacetime interfaces with arbitrary orientation. This approach yields a very concise and elegant
structure for various identities such as the Stokes theorem. More importantly, it eliminates problems pertained to
orthogonality and the definition of magnitude and normal vectors in classical mechanics due to the absence of an objective
definition for spacetime normal vectors. While many of the mathematical statements necessary can be made with ‘standard’
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tensor calculus notation, we find that differential forms in spacetime are extremely useful in identifying the correct
spacetime fluxes, restrictions on arbitrarily oriented boundaries, and dual quantities. Differential forms for finite element
methods are not quite standard, but their usage is increasing due to their compact notation and elucidation of physical and
mathematical properties (see, e.g., [17-20]).

We follow by discussing the restrictions of differential forms to element faces and basic coordinate transformations.
We then state the Riemann problem for a general linear hyperbolic system and demonstrate the solution construction on
arbitrarily oriented boundaries. Source terms in the differential system are shown to have no effect on the Riemann solution
(in the SDG context). We also provide examples from linearized elastodynamics, non-Fourier heat conduction, and a form of
generalized linear thermoelasticity. We use the non-linear Euler equations (inviscid flow) to demonstrate how our method
can be applied after performing linearization of the flux Jacobian.

2. Spacetime discontinuous Galerkin methods

The spacetime discontinuous Galerkin methods developed in [4-9] are a family of discontinuous finite element methods
for hyperbolic systems of equations. They utilize an advancing front mesh generation procedure that allows local ‘patches’
of elements to become decoupled from the global solution domain through causality. Other spacetime methods that use a
more conventional ‘time extrusion’ or ‘timeslab’ approach can be found in [10-14]. Our formulations all share a control
volume structure over a spacetime element, where volumetric changes are balanced by surface fluxes. We utilize the
coordinate-free notation of differential forms, which is atypical in the computational mechanics literature but very useful
on arbitrarily oriented manifolds in spacetime. The forms allow us to clearly identify and distinguish spatial and temporal
fluxes, space-like and time-like manifolds, as well as circumventing the need to define a “natural” spacetime metric. The
use of differential forms within the context of numerical methods has also been espoused by other authors, see e.g. [19].
Coordinate transformations are necessary on element faces, where we must solve the one-dimensional Riemann problem in
the normal direction. As such, herein we provide details on the coordinate transformations used in our SDG implementations.

2.1. Differential forms notation

We use the notation of differential forms on spacetime manifolds to develop our SDG formulations. This approach
supports a direct coordinate-free notation that can be used to express fluxes across spacetime interfaces with arbitrary
orientation, such as element boundaries in unstructured spacetime meshes. This leads to concise representations of the
governing equations that emphasize the notion of conservation on spacetime control volumes. In contrast to tensor
notation, for example, the Stokes theorem expressed in forms notation does not require unit vectors ‘normal’ to spacetime
d-manifolds. Such objects are not well defined, given the absence of an inner-product for spacetime vectors in classical
mechanics. In this subsection, we present definitions and notations for differential forms with tensor coefficients on
spacetime manifolds. See [21-24] for more complete expositions of differential forms and the exterior calculus on manifolds.
Our formulation is specialized to flat spacetime manifolds for simplicity.

Consider a flat spacetime manifold © C M := E¢ x R in which d is the spatial dimension of the manifold. We use the
basis {e;, et}le, in which the spatial basis {e;} spans E? and e, is the temporal basis vector, to represent vectors in the tangent
space. The tangent bundle for our flat spacetime is uniform over .M, so we denote the tangent space at all points P € M
simply as 7, rather than the usual 7. The dual basis for covectors in the cotangent bundle 7* is denoted as {e', et}id:1 and
is determined by the relations ei(ej) = 8!, el(e;) = 0,e'(e;) = 0and e'(e;) = 1. Thus, the component representation of
any vectora € 7 and any covector b € 7* are a = d'e; + a’e; and b = b;e' + b;e’ in which, and from here on, summation
from 1 to d is implied for indices repeated between subscripts and superscripts, excepting the reserved index t for which no
summation is implied. We use bold italic type to denote forms and covectors and bold upright type to denote vectors and
tensors.

Let 7" := T x --- x T (r times) be the space of r-vectors. The space of r-covectors (i.e., alternating, r-linear functions on
7 ") is denoted by A"T*. The standard basis for r-covectors is denoted by {e*}, inwhich A =iy ...i, is a strictly increasing

r-index. Any r-covector @ € A7 * has a unique component representation with respect to the standard basis, ® = w;e*,
in which summation over strictly increasing r-indices is implied.

We use “A” to denote the usual exterior product operator and d to denote the exterior derivative.

Adifferential r-form on D (with scalar coefficients) is an r-covector field on £; we call these r-forms for short. The standard
basis for 1-forms is {dxi, dt}:i:], where, for our flat manifold, the dx’ are 1-forms with uniform values €, and dt is the 1-form
with uniform value ef. Thus, any one form with scalar coefficients has the unique component representation with respect to
the standard basis, @ = w;dx' + w,dt, in which w; and w; are scalar fields on D. Top forms in spacetime are (d + 1)-forms, for
which the standard basis is the singleton set {82}, where £ = dx' A - - - Adx? Adt. Thus, a top-form « with scalar coefficients
is expressed as & = 2 in which « is a scalar function on D.

Let a be an r-form with tensor coefficient a of orders : s € N, with a suitable inner product defined on the space of tensor
coefficients. The Hodge star operator is defined by

o Axa = |al’ e, (1)
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