ELSEVIER

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Harmonic mappings related to Janowski starlike functions

Yasemin Kahramaner^a, Yaşar Polatoğlu^b, Melike Aydoğan^{c,*}

- ^a Department of Mathematics, İstanbul Ticaret University, İstanbul, Turkey
- ^b Department of Mathematics and Computer Sciences, İstanbul Kültür University, İstanbul, Turkey
- ^c Department of Mathematics, Isık University, Mesrutiyet Koyu, Sile İstanbul, Turkey

ARTICLE INFO

Article history:
Received 8 July 2013
Received in revised form 2 September 2013

MSC: 30C45 30C55

Keywords: Harmonic mappings Distortion theorem Growth theorem Coefficient inequality

ABSTRACT

The main purpose of the present paper is to give the extent idea which was introduced by Robinson (1947) [6]. One of the interesting application of this extent idea is an investigation of the class of harmonic mappings related to Janowski starlike functions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let $\mathbb{D}=\{z\in\mathbb{C}|\,|z|<1\}$ be the open unit disc in the complex plane $\mathbb{C}.$ A complex-valued harmonic function $f:\mathbb{D}\to\mathbb{C}$ has the representation

$$f = h + \overline{g} \tag{1.1}$$

where h(z) and g(z) are analytic in $\mathbb D$ and have the following power series expansion,

$$h(z) = \sum_{n=0}^{\infty} a_n z^n,$$

$$g(z) = \sum_{n=0}^{\infty} b_n z^n, \quad z \in \mathbb{D},$$

where $a_n, b_n \in \mathbb{C}$, $n = 0, 1, 2, \ldots$ Choose (i.e., $b_0 = 0$) so the representation (1.1) is unique in \mathbb{D} and is called the canonical representation of f [1].

For the univalent and sense-preserving harmonic functions f in \mathbb{D} , it is convenient to make further normalization (without loss of generality), h(0) = 0 (i.e., $a_0 = 0$) and h'(0) = 1 (i.e., $a_1 = 1$). The family of such functions f is denoted by S_H [2]. The family of all functions $f \in S_H$ with the additional property that g'(0) = 1 (i.e., $b_1 = 0$) is denoted by S_H^0 [2]. Observe that the classical family of univalent functions S consists of all functions $f \in S_H^0$ such that g(z) = 0. Thus it is clear that $S \subset S_H^0 \subset S_H$ [2].

^{*} Corresponding author. Tel.: +90 5323347013. E-mail addresses: ykahramaner@iticu.edu.tr (Y. Kahramaner), y.polatoglu@iku.edu.tr (Y. Polatoğlu), melike.aydogan@isikun.edu.tr (M. Aydoğan).

Let Ω be the family of functions $\phi(z)$ regular in the open unit disc $\mathbb D$ and satisfying the conditions $\phi(0)=0, |\phi(z)|<1$ for every $z\in\mathbb D$.

For arbitrary fixed numbers A, B, $-1 \le B < A \le 1$ denote by P(A, B), the family of functions $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ regular in $\mathbb D$ and such that p(z) is in P(A, B) if and only if

$$p(z) = \frac{1 + A\phi(z)}{1 + B\phi(z)},\tag{1.2}$$

for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$. This class was introduced by Janowski W. [3].

Lemma 1.1 ([4]). Let $\phi(z)$ be regular in the open unit disc \mathbb{D} with $\phi(0) = 0$ and $|\phi(z)| < 1$. If $|\phi(z)|$ attains its maximum value on the circle |z| = r at the point z_1 , then we have $z_1 \cdot \phi'(z) = k\phi(z_1)$ for some $k \ge 1$.

Theorem 1.2 ([3]). If $h(z) \in S^*(A, B)$, then for |z| = r, 0 < r < 1

$$C(r, -A, -B) \le |h(z)| \le C(r, A, B)$$

$$C(r, A, B) = \begin{cases} r(1 + Br)^{\frac{A-B}{B}}, & B \neq 0; \\ re^{Ar}, & B = 0. \end{cases}$$
 (1.3)

Theorem 1.3 ([5]). Let $h(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ be an element of $S^*(A, B)$, then

$$|a_n|^2 \le \begin{cases} \prod_{m=0}^{k-2} \frac{|(A-B)+mB|^2}{(m+1)^2}, & B \ne 0; \\ \prod_{m=0}^{k-2} \frac{|A|^2}{(m+1)^2}, & B = 0. \end{cases}$$
(1.4)

2. Main results

Theorem 2.1. Let $f = (h(z) + \overline{g(z)})$ be an element of $S_H^*(A, B)$. Then

$$\frac{g(z)}{h(z)} < b_1 \frac{1 + Az}{1 + Bz}. \tag{2.1}$$

Proof. Since $f = h(z) + \overline{g(z)}$ is an element of $S_H^*(A, B)$, we have

$$\frac{g'(z)}{h'(z)} < b_1 \frac{1 + Az}{1 + Bz} \Rightarrow \frac{1}{b_1} \frac{g'(z)}{h'(z)} = \frac{1 + A\phi(z)}{1 + B\phi(z)} \Rightarrow
\left| \frac{1}{b_1} \frac{g'(z)}{h'(z)} - \frac{1 - ABr^2}{1 - B^2 r^2} \right| \le \frac{(A - B)r}{1 - B^2 r^2} \Rightarrow
|b_1| \frac{1 - Ar}{1 - Br} \le \left| \frac{g'(z)}{h'(z)} \right| \le |b_1| \frac{1 + Ar}{1 + Br}.$$
(2.2)

Therefore the relations (2.2) shows that the values of $(\frac{g'(z)}{h'(z)})$ are in the disc

$$D_{r}(b_{1}) = \begin{cases} \left\{ \frac{g'(z)}{h'(z)} \left| \left| \frac{g'(z)}{h'(z)} - \frac{b_{1}(1 - AB)r^{2}}{1 - B^{2}r^{2}} \right| \leq \frac{|b_{1}|(1 - AB)r^{2}}{1 - B^{2}r^{2}} \right\}, \quad B \neq 0 \\ \left\{ \frac{g'(z)}{h'(z)} \left| \left| \frac{g'(z)}{h'(z)} - b_{1} \right| \leq |b_{1}|Ar \right\}, \quad B = 0. \end{cases}$$

$$(2.3)$$

Now we define a function $\phi(z)$ by

$$\frac{g(z)}{h(z)} = b_1 \frac{1 + A\phi(z)}{1 + B\phi(z)} \tag{2.4}$$

Download English Version:

https://daneshyari.com/en/article/4638767

Download Persian Version:

https://daneshyari.com/article/4638767

Daneshyari.com