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1. Introduction

Chinchuluun and Pardalos [1] considered optimality conditions and duality for multiobjective programming problems,
multiobjective fractional programming problems and multiobjective variational programming problems under the assump-
tions of (C, «, p, d)-convexity. Liang et al. [2] introduced a unified formulation of the generalized convexity and obtained
some results on optimality conditions and duality theorems for a single objective programming problem. Yuan et al. [3]
studied nondifferentiable minimax fractional programming problem for locally Lipschitz functions under the assumptions
of (C, «, p, d)-convexity. Yuan et al. [4] considered (C, «, p, d)-type-I functions and presented sufficient optimality condi-
tions and duality results for a nondifferentiable multiobjective programming problem for Lipschitz functions. Chinchuluun
et al. [5] extended the results of [4] to multiobjective fractional case.

Long et al. [6] studied a class of nondifferentiable multiobjective fractional programs in which every component of the ob-
jective function contains a term involving the support function of a compact convex set and obtained Kuhn-Tucker necessary
and sufficient optimality conditions, duality and saddle point results for weakly efficient solutions of the nondifferentiable
multiobjective fractional programming problems. Recently, Long [7] considered a class of nondifferentiable multiobjective
fractional programming problem in which the numerator of every component of the objective function contains a term
involving the support function of a compact convex set. Long [7] established sufficient optimality conditions and duality
results for the problem involving (C, «, p, d)-convexity. Kim and Kim [8] established sufficient optimality conditions and
duality results for nondifferentiable generalized fractional programming problem in which the numerator as well as the de-
nominator of every component of the objective function contains a term involving the support function of compact convex
sets. Kim and Kim [8] obtained these results under the (V, p)-Invexity assumptions.
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In this paper, we have considered a class of nondifferentiable multiobjective fractional programming problem in which
the numerator as well as denominator of every component of the objective function contains a term involving the support
functions of convex sets. We have obtained sufficient optimality conditions and duality results for the problem under the
assumption of (C, «, p, d)-convexity.

2. Notations and preliminaries

We consider the following nondifferentiable generalized minimax fractional programming problem with support
function (GMFPS):

F(x,y) minsu f () +sEO0)

(GMFPS) min sup =
xR yey G(X,y) xR yey g (X,y) — s (x|D)
Subject to hj (x) + s (x|Ej) <0, j=1,...,p, (1)
where Y is a compact subset of R", f,g : R" x R" — R,and h; : R* — RP (j =1, ..., p), are continuously differentiable
functionsonR" xR™.C, DandE; (j = 1, ..., p) are compact convex sets in R™, and s (x|C), s (x|D) and s (x|Ej), G=1,....p

designate the support functions of compact sets and F (x,y) > 0 and G(x,y) > O for all feasible x. Let R" be the
n-dimensional Euclidean space and R, be nonnegative orthant of R". Let X be an open subset of R". Assume thato : X xX —
R\ {0}, p e Randd: X x X — Ry satisfiesd (x, X)) =0 < x = xg.Let C : X x X x R" — R be a function which satisfies
Cix,xp) (0) = 0 for any (x, x9) € R* x R™.

Let S = {x € X : g (x) < 0} denote the set of all feasible solutions of (GMFPS). For each (x,y) € R" x R™, we define
¢ (x,y) = %, such that for each (x,y) € S x Y, f (x,y) + s (x|C) > 0and g (x,y) — s (x|D) > 0.

Let us define the following sets for every x € S:

J &) = {j €JIhj ®) + s (x|Ej) =0},
Y () = { f&xy)+sxC) F(x,2)+sx|0) }
=Jyey|—— """ —qup ———— "},
g, y) —sxD) ey g%, 2z) —s(x|D)
(s.t.J) ENXR. XxR":1<s<n+1,t=(t1,....t) €R,

N
Ko = withY 6= 1,7 = Gr.....J) and i € Y (0,i=1,2,....5
i=1

Since f and g are continuously differentiable and Y is compact subset of R™, it follows that for each x* € S, Y (x*) # ¢. Thus
for any y; € Y (x*), we have a positive constant

o oy S &) +s(xFO)
ko = ¢ (x*,3) = o) D)

The problem (GMFPS) is more general than that of the problems considered by Kim and Kim [8] as well as by Long [7].

Definition 2.1. A function C : X x X x R" — Ris said to be convex on R" iff for and fixed (x, xo) € X x X and for any
¥1,¥2 € R", one has

Cixxg) Ay1 + (1 =21)y2) < ACixy) 1) + (1 = 1) Cixx) (v2) forall X €]0, 1[.

Definition 2.2 (/9]). A differentiable function h : X — R is said to be (C, «, p, d)-convex at xo € X iff for any x € X,

h(x) — h (xo) d(x, Xo)
o (X, Xo) > C(x.xo) (Vh (XO)) + Ioa (X, XO) .

The function h is said to be (C, «, p, d)-convex on X iff it is (C, «, p, d)-convex at every point in X. In particular, h is said to
be strongly (C, «, p, d)-convex on X iff p > 0.

Remark 2.1. If the function C is sublinear with respect to the third argument, then the (C, «, p, d)-convexity is the same
as the (F, o, p, d)-convexity introduced by Liang et al. [10].

Let K be a compact convex set in R". The support function of K is denoted by s (x|K) and defined by s (x|K) :=
max {x'y : y € K}.
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