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a b s t r a c t

An adaptive conservative or dissipative numerical method for nonlinear partial differential
equations is established. The method not only inherits the conservation or dissipation
property of the equation but also uses suitable non-uniform grids at each time step. Our
numerical experiments indicate that the method is useful especially for localized solutions
such as solitary wave solutions.
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1. Introduction

In this note, we show that by a simple idea we can establish an adaptive conservative or dissipative numerical method
for partial differential equations (PDEs) with the independent variables (x, t) ∈ Rd

× R, of the form

∂u
∂t

= D
δG
δu
, (1)

where u = u(x, t) ∈ R,D is a skew-symmetric or negative semidefinite differential operator, and δG/δu denotes the vari-
ational derivative of G(u, ux). In the numerical analysis of differential equations, ‘‘structure-preserving’’ methods have been
attractingmuch attention. They aremethods preserving geometric properties of a differential equation (for example, see [1]
for ODEs and [2,3] for PDEs). In this note we restrict our attention to PDEs of the form (1). If D is skew-symmetric, (1) has a
conservation property

d
dt


G(u, ux)dx = 0,

under appropriate boundary conditions. A typical example of this class is the KdV equation

∂u
∂t

=
∂

∂x


3u2

+
∂2u
∂x2


, 0 < x < L, t > 0, (2)
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where G(u, ux) = u3
− u2

x/2 and L is a real number. If D is negative semidefinite, (1) has a dissipation property

d
dt


G(u, ux)dx ≤ 0,

again under appropriate boundary conditions.1 A typical example of this class is the Cahn–Hilliard equation

∂u
∂t

=
∂2

∂x2


pu + ru3

+ q
∂2u
∂x2


, 0 < x < L, t > 0, (3)

where G(u, ux) = pu2/2 + ru4/4 − qu2
x/2, and p, q, r are real parameters.

In the last two decades, much effort has been devoted in order to construct several frameworks which derive conserva-
tive/dissipative schemes. For example, Furihata proposed the discrete variational derivative method (DVDM) [4] (see also
Furihata–Matsuo [5], Celledoni et al. [6]) in finite difference context. It has then been applied to some fundamental PDEs to
prove that the method is in fact effective. We note that the concept of the temporal discretization is essentially the same as
the discrete gradient method known in the ODE context (for the discrete gradient method, see [7–9] for example).

However, there remained several issues to be settled before the method could be truly useful for large, practical appli-
cations. The first issue was the adaptation to non-uniform grids. The original DVDMwas constructed only on uniform grids
since it required the summation-by-parts formula regarding difference operators. Obviously such formulas are not easily
constructed on non-uniform grids. Fortunately, this issue has been successfully settled by some recent studies. Yaguchi–
Matsuo–Sugihara found their way by using either the mapping method [10] or discrete differential forms [11]. Matsuo [12]
gave another solution by extending the DVDM to Galerkin (finite element) context.

Another difficulty in the original DVDM was that it assumed static grids, and it was not clear at all if it could be incor-
porated with a dynamic grid technique. Such a technique is required in practical problems where a localized point (or area)
moves as time passes (consider, for example, a moving solitary wave), in order to increase the overall efficiency. Unfortu-
nately, however, it seems that no study has ever succeeded in such a challenge, not only in the context of the DVDM, but also
in the more general context of the structure-preserving methods for PDEs, except in very specific studies such as [13]. The
reason for this is that such structure-preserving methods usually employ a very sophisticated time stepping for the desired
structure-preservation, which generally seems to contradict the concept of grid adaptation.

Motivated by this background, in this note we shall show that by a simple idea we can establish an adaptive conserva-
tive/dissipativemethod. This is done by combining the following twomain techniques: the conservative/dissipativemethod
on static non-uniform grids mentioned above, and the grid adaptation technique frequently used in the context of the
wavelet based numerical methods [14–17]. Here we would like to emphasize that a simple combination of them would
destroy the desired conservation/dissipation properties. The key is to introduce an additional optimization step, by which
the destruction can be avoided. As far as the authors know, this is the first study where a systematic grid adaptation is
realized in the context of energy conservative/dissipative methods for PDEs.

This note is organized as follows. In Section 2, the standard conservative/dissipative method on non-uniform grids is re-
viewed. As an example, we employ the Galerkin approach [12]. In Section 3, the standard dynamic grid adaptation technique
is reviewed to show how to obtain appropriate grids at each time step. In Section 4, the adaptive conservative/dissipative
algorithm and numerical experiments are shown. Conclusions are discussed in Section 5.

Throughout this note, numerical solutions are denoted by u(n) ≃ u(n1t, ·)where1t is the time step size, and the inner
product is defined by (f , g) =

 L
0 fgdx. Although the ideas in the present paper should carry to two- or three-dimensional

cases, we restrict ourselves to one-dimensional problems for the clarity of description.

2. Energy conservative/dissipative method on static non-uniform grids

In this section, we review the energy conservative/dissipative Galerkin method [12] for the KdV and Cahn–Hilliard
equations.

Suppose that the interval [0, L] is partitioned appropriately (not necessarily uniformly), and let Sh ⊂ H1(0, L) (H1 denotes
the first order Sobolev space) be, for example, the piecewise linear function space over the grid. For the KdV equation (2),
let us use the space X = {v | v ∈ Sh, v(0) = v(L)} in order to consider the periodic boundary conditions. The KdV equation
can be written as the variational (Hamiltonian) form

ut = ∂x
δG
δu
, G(u, ux) = u3

−
u2
x

2
,

or equivalently, the following system:

ut = (p1)x, p1 =
δG
δu
.

1 Hereafter G(u, ux) is often abbreviated as G(u)when no confusion can occur.



Download English Version:

https://daneshyari.com/en/article/4638777

Download Persian Version:

https://daneshyari.com/article/4638777

Daneshyari.com

https://daneshyari.com/en/article/4638777
https://daneshyari.com/article/4638777
https://daneshyari.com

