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a b s t r a c t

In this paper, we study planar quintic G2 Hermite interpolation with minimum strain en-
ergy. To match arbitrary G2 Hermite data, a quintic curve is expressed in terms of four free
parameters that encode the local reparameterization at the endpoints and are available
for further optimization. We express the approximate strain energy as a quartic function
in four parameters, whose minimum can be found by solving an optimization problem of
two parameters relating to the magnitudes of endpoint tangent vectors. A feasible region
is used while searching the optimal values of these two parameters such that the interpo-
lating curve can preserve tangent directions and avoid singularities at the endpoints. We
then solve this constrained minimization problem via the proximal gradient method. Sev-
eral comparative examples are provided to demonstrate the effectiveness of the proposed
method and applications to shape design are also shown.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The construction of fair curves and surfaces is a fundamental problem in the field of geometric modeling and related
applications [1,2]. To satisfy functional or aesthetic criteria, designed objects often have to exactly match prescribed data,
such as a series of points and derivatives. In industrial design, fair curves and surfaces are themost preferred representation
to meet the requirements of design and modeling. A curve or surface is represented using more than enough degrees of
freedom to satisfy demanded geometric constraints, with the remaining freedom used to achieve a fair shape byminimizing
an energy function representing the fairness, see e.g. [3–7].

The standard Hermite interpolation is simple to construct and compute, but it does not always provide satisfactory re-
sults. As pointed out in [3], C1 Hermite interpolationmay produce undesired shapes if themagnitudes of tangent vectors are
unsuitable. Geometric Hermite interpolation is a natural generalization which deals with interpolation of geometric quan-
tities such as points, tangent directions, curvatures, and so on. de Boor et al. [8] proposed a cubic G2 interpolation scheme
for planar curves, but the solutions that are computed numerically exist only when admissibility conditions on the data are
satisfied. This method is generalized to the quartic case [9]: if the endpoint tangent directions have an intersection, a family
of quartic curves with two free parameters is constructed.

A lot of work on G2 Hermite interpolation using spiral segments has been proposed. Spiral segments are a kind of ge-
ometric curves with monotone curvature and have been widely considered as fair curves in path design and computer
graphics [10]. Since non-uniform rational B-splines (NURBS) are the industry standard for the representation of geometry
in CAD/CAM, many researchers have proposed to use polynomial or rational curves of low degrees for matching G2 Hermite
data. For example, there are many approaches based on cubics [11], Pythagorean hodograph (PH) quintics [12] and rational
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cubics [13]. However, these methods have to meet certain conditions under which the interpolating curves are guaranteed
to be spiral segments — that is, only admissible G2 Hermite data can be interpolated by polynomial spiral segments. It is
rather annoying when encountering the case where the required conditions are not satisfied. Recently, Deng and Ma [14]
presented a biarc-based subdivision scheme that can produce planar spirals without this limitation, but the resulting sub-
division curves are non-polynomial.

In this paper, we consider the problem of G2 Hermite interpolation by quintic curves. Yong and Cheng [3] introduced
cubic optimized geometric Hermite (OGH) curves that interpolate G1 data. Their main idea is to optimize the magnitudes
of endpoint tangent vectors so that the strain energy of a cubic curve is minimized. Jaklič and Žagar [15] constructed cubic
G1 interpolatory splines by taking tangent directions as unknowns, thereby relaxing conditions on admissible regions for
tangent directions. In [16], optimized geometric Hermite curves are obtained by minimizing the curvature variation. How-
ever, these methods have two limitations. First, the preservation of tangent directions, which is deemed highly desirable in
shape design and modeling applications, cannot be guaranteed if tangent angle constraints are not satisfied. Second, singu-
lar cases arise when the magnitudes of tangent vectors approach zero. For example, when the two tangent angles are very
close to π/2, the resulting curve is nearly a straight line segment. To overcome these problemsmentioned above, a possible
way is to use polynomial curves of higher degree. It is clear that the quintics are the lowest degree polynomial curves that
can match arbitrary G2 Hermite data without any constraint and have enough flexibility for shape design. A quintic curve
has four more degrees of freedom than a cubic curve, but two degrees of freedom are used to match given curvatures in
G2 Hermite interpolation. Furthermore, we will show that, for arbitrary G2 Hermite data, a quintic interpolating curve can
always be constructed in terms of four free parameters that encode the local reparameterization at the endpoints [17]. In
contrast to the previous methods [8,9], our method has no constraint on the input data and thus can be applied widely.

Our goal is to determine the four free parameters by minimizing the strain energy. It is an energy minimization based
method to obtain fair curves, and generalizes cubicG1 Hermite interpolation in [3,15,16] to quinticG2 Hermite interpolation.
We observe that two parameters are quadratic functions of the other two parameters when the minimum is reached, and
thus express the approximate strain energy as a quartic function of two unknowns. We say that it is an acceptable solution
if the endpoint tangent vectors of the resulting curve have the given directions and the magnitudes lying in a user-specified
feasible region. Therefore, it is equivalent to solving a constrained minimization problem subject to the trust-region bound,
which can be efficiently solved by using the proximal gradient method (see [18,19] for details).

The rest of this paper is organized as follows. In Section 2 we represent a quintic curve with four parameters to match G2

Hermite data. In Section 3 we present the algorithm based on the proximal gradient method. In Section 4 we show several
examples and comparisons with the previous methods. Finally, we conclude the paper in Section 5.

2. Quintic G2 Hermite interpolation

A planar quintic Bézier curve is defined by

b(t) =

5
i=0

biB5
i (t), t ∈ [0, 1], (1)

where bi ∈ R2 are control points and Bn
i (t) =

 n
i


t i(1 − t)n−i are Bernstein polynomials of degree n. The signed curvature

of b(t) is

κ(t) =
det(b′(t), b′′(t))

∥b′(t)∥3

if b(t) is regular, i.e., ∥b′(t)∥ ≠ 0. The curvature is positive if the center of the osculating circle is on the left when a curve
is traversed in the direction of increasing parameter; otherwise, it is negative.

Planar G2 Hermite data consist of two points P0, P1, with the associated unit tangent vectors T0, T1 and curvatures κ0, κ1.
Denote by ϕ0 the angle from T0 to P0P1 and by ϕ1 the angle from P0P1 to T1, where counterclockwise angles are positive and
clockwise angles are negative. LetN0 andN1 be the unit normals formedby rotating T0 and T1 counterclockwise throughπ/2,
respectively. If the curvature at an endpoint is positive (or negative), the curvature vector and normal vector at this endpoint
have the same (or opposite) directions, see Fig. 1 for an illustration. In practical applications, there are two important
transition curves: if ϕ0 > 0, ϕ1 > 0, κ0 > 0, κ1 > 0 or ϕ0 < 0, ϕ1 < 0, κ0 < 0, κ1 < 0, then a C-shaped transition curve is
sought; if ϕ0 > 0, ϕ1 < 0, κ0 > 0, κ1 < 0 or ϕ0 < 0, ϕ1 > 0, κ0 < 0, κ1 > 0, then an S-shaped transition curve is sought.

To match the positions and tangent directions at the endpoints, it yields

b0 = P0, b5 = P1 (2)

and

b1 = P0 +
α0

5
T0, b4 = P1 −

α1

5
T1 (3)

where αi > 0 are scalar parameters.
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