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a b s t r a c t

To avoid finding the stationary distributions of stochastic differential equations by
solving the nontrivial Kolmogorov–Fokker–Planck equations, the numerical stationary
distributions are used as the approximations instead. This paper is devoted to approximate
the stationary distribution of the underlying equation by the Backward Euler–Maruyama
method. Currently existing results (Mao et al., 2005; Yuan et al., 2005; Yuan et al., 2004)
are extended in this paper to cover larger range of nonlinear SDEs when the linear growth
condition on the drift coefficient is violated.
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1. Introduction

Stochastic differential equations (SDEs) have been widely used in modelling uncertain phenomena in many areas [1,2].
However, due to the difficulty to find general explicit solutions to non-linear SDEs, numerical approximations have been
attracting a lot of attention in recent decades [3,4]. One aspect of the numerical analyses for SDEs focuses on asymptotic
properties of approximations, among which the asymptotic stability particularly has been interesting to many researchers.
There are different types of stabilities, and the almost sure stability and the moment stability are the two that have been
discussed a lot. We mention some of the works [5–13] and the references therein. Briefly, those two stabilities are defined
by that for any given initial value the solution will decay to the trivial solution (in the sense of moment or almost surely) as
time tends to infinity.

However, those stabilities mentioned above sometimes are too strong. In some cases, the solution will not decay to the
trivial solution but oscillate as time advances. In this situation, the underlying solution may have a stationary distribution.
Stationary distribution of SDEs has manymodelling applications, for example in the dynamic of species population [14] and
in epidemiology [15]. One way to find the stationary distribution is by solving the Kolmogorov–Fokker–Planck equation.
But this is nontrivial. Another way is to approximate it using the stationary distribution obtained from some numerical
solution. To follow this approach, one first needs to show the existence and uniqueness of the stationary distribution for the
numerical solution. Then the numerical stationary distribution needs to be shown to converge to the underlying one.

The second author’s series papers [16–18] are devoted to numerical stationary distributions of stochastic differential
equations. In those series papers, the explicit Euler–Maruyama (EM) method was used due to the simple structure and
moderate computational cost [19]. However, the explicit EM method has its own restriction, as mentioned in [20], it may
not converge to the true solution of the super-linear-coefficient SDEs even in finite time. Therefore, both the drift coefficient
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and the diffusion coefficientwere required to be global Lipschitz in the series papers. Those restrictions excludemany highly
non-linear models, for example [21,15,22] and the references therein.

In this paper, we propose the Backward Euler–Maruyama (BEM) method as the approximation. The BEMmethod, which
is a drift implicit scheme, has been broadly investigated and shown better at dealing with the highly non-linear SDEs in
both finite time convergence problems and asymptotic problems. We mention some works [23,24,10,25,11,12,26] here
and the references therein. In this paper, we are going to investigate the existence and uniqueness of the numerical
stationary distribution of the BEMmethod and the convergence of it to the underlying stationary distribution. One of our key
contributions is that we release the global Lipschitz condition on the drift coefficient by assuming the one-sided Lipschitz
condition instead, but we still require the global Lipschitz condition on the diffusion coefficient. And this restriction is due
to the techniques employed in the proofs in Section 3, in which the diffusion coefficient needs to be bounded by some
linear term. We mention that some papers on the finite time convergence discussed certain type of SDE models with the
non-global Lipschitz diffusion coefficient [26]. Therefore, one of the open problems is that can we use some other methods
to approximate the stationary distributions of some classes of SDE models without the global Lipschitz on the diffusion
coefficient?

This paper is constructed as follows. We first brief the method, definitions, conditions on the SDEs as well as other
mathematical preliminaries in Section 2. Then,we propose the coefficients related sufficient conditions for the existence and
uniqueness of the numerical stationary distribution in Section 3.1. Under the same conditions, the stationary distribution
of the underlying solution is presented in Section 3.2. The convergence of the numerical stationary distribution is proved
in Section 3.3. In Section 4, we demonstrate the theoretical results by some numerical simulations. We conclude this paper
and discuss some future research in Section 5.

2. Mathematical preliminaries

Throughout this paper, let (Ω, F , P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual
conditions (that is, it is right continuous and increasing while F0 contains all P-null sets). Let | · | denote the Euclidean
norm in Rd. The transpose of a vector or matrix, M , is denoted by MT and the trace norm of a matrix, M , is denoted by
|M| =


trace(MTM). IfM is a squarematrix, the smallest and largest eigenvalues ofM are denoted byλmin(M) andλmax(M),

respectively.
Let f , g : Rd

→ Rd. To keep symbols simple, let B(t) be a scalar Brownian motion. The results in this paper can
be extended to the case of multi-dimensional Brownian motions. We consider the d-dimensional stochastic differential
equation of Itô type

dx(t) = f (x(t))dt + g(x(t))dB(t) (2.1)

with initial value x(0) = x0.
We first assume that the drift coefficient satisfies the local Lipschitz condition and the diffusion coefficient satisfies the

global Lipschitz condition.

Condition 2.1. For any h > 0, there exists a constant Ch > 0 such that

|f (x) − f (y)|2 ≤ Ch|x − y|2,

for any x, y ∈ Rd with max(|x|, |y|) ≤ h.

Condition 2.2. There exists a constant K̄2 > 0 such that

|g(x) − g(y)|2 ≤ K̄2|x − y|2,

for any x, y ∈ Rd.

We further impose the following condition on the drift coefficient.

Condition 2.3. Assume there exist a symmetric positive-definite matrix Q ∈ Rd×d and a constant K̄1 ∈ R such that

(x − y)TQ (f (x) − f (y)) ≤ K̄1(x − y)TQ (x − y),

for any x, y ∈ Rd.

From Conditions 2.2 and 2.3, it is easy to see that for any x ∈ Rd

xTQf (x) ≤ K1xTQx + α1, (2.2)

and

|g(x)|2 ≤ K2|x|2 + α2, (2.3)

with K2, α1, α2 > 0 and K1 ∈ R.
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