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a b s t r a c t

A dynamic contact problem between a viscoelastic body and a deformable obstacle is nu-
merically considered in this work. The contact is modeled by using the well-known nor-
mal compliance contact condition. The variational formulation of this problem iswritten in
terms of the velocity field and it leads to a parabolic nonlinear variational equation. An exis-
tence and uniqueness result is stated. Fully discrete approximations are then introduced by
using the finite elementmethod to approximate the spatial variable, and a hybrid combina-
tion of the implicit and explicit Euler schemes to discretize the time derivatives. An a priori
error analysis is recalled. Then, an a posteriori error analysis is provided extending some
results already obtained in the study of the heat equation, other parabolic equations and
the quasistatic case. Upper and lower bounds are proved. Finally, some two-dimensional
numerical simulations are presented to demonstrate the accuracy and the behavior of the
error estimators.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, a dynamic contact problem involving a viscoelastic body and a deformable obstacle is considered from the
numerical point of view. Different problems dealing with this kind of viscoelastic materials have been studied in the past
thirty years, and they are interesting because many metals or crystals can be modeled by using this theory.

Since the first results provided in [1], a large number of papers dealing with dynamic viscoelastic contact problems have
been published including issues such as the existence and uniqueness of solutions and their properties (see, for instance,
[2–14]) or their numerical analysis (see, e.g., [15–22]).

In this paper, we revisit a well-known dynamic contact problem involving a linear viscoelastic body. An a priori analysis
is recalled (to our knowledge, it was not published yet), by using some ideas employed in [23] for the case including the
mechanical damage. Then, an a posteriori error analysis is provided extending some arguments already applied in the study
of the heat equation (see, e.g., [24,25]), some parabolic equations (see [26]), the Stokes equation (see [27]) or the recently
considered quasistatic case (see [28]). As far as we know, this is the first time when such a posteriori error techniques
are applied to the study of dynamic contact problems in solid mechanics, and it continues [29], where the contact with a
deformable obstacle was not considered.

∗ Corresponding author. Tel.: +34 986818746; fax: +34 986812116.
E-mail address: jose.fernandez@uvigo.es (J.R. Fernández).

http://dx.doi.org/10.1016/j.cam.2014.08.016
0377-0427/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2014.08.016
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2014.08.016&domain=pdf
mailto:jose.fernandez@uvigo.es
http://dx.doi.org/10.1016/j.cam.2014.08.016


J.R. Fernández, D. Santamarina / Journal of Computational and Applied Mathematics 276 (2015) 30–46 31

Fig. 1. A viscoelastic body in dynamic contact with a deformable obstacle.

The paper is structured as follows. In Section 2, the mechanical model and its variational formulation are described
following the notation and assumptions introduced in [30,10]. Then, a fully discrete scheme is introduced in Section 3, by
using the finite element method to approximate the spatial variable and a hybrid combination of the implicit and explicit
Euler schemes to discretize the time derivatives. An a priori error estimates result, proved proceeding as in the case of
including the mechanical damage, is recalled. Then, extending some results obtained in the study of quasistatic viscoelastic
problems and the heat equation, an a posteriori error analysis is shown in Section 4, providing an upper bound for the error,
Theorem 5, and a lower bound, Theorem 6. Finally, some numerical simulations, involving two-dimensional examples, are
presented in Section 5.

2. Mechanical problem and its variational formulation

In this section, we present a brief description of the model (details can be found in [30,10]).
Denote by Sd the space of second order symmetric tensors on Rd and by ‘‘·’’ and ∥ · ∥ the inner product and the Euclidean

norms on Rd and Sd.
Let Ω ⊂ Rd, d = 2, 3, denote a domain occupied by a viscoelastic body with a Lipschitz boundary Γ = ∂Ω decomposed

into three disjoint parts ΓD, ΓF and ΓC such that meas (ΓD) > 0 and meas (ΓC ) > 0. Let [0, T ], T > 0, be the time interval
of interest. The body is being acted upon by a volume force with density f0, it is clamped on ΓD and surface tractions with
density fF act on ΓF . Finally, we assume that the bodymay come in contact with a deformable obstacle on the boundary part
ΓC , which is located at a distance s, measured along the outward unit normal vector ν = (νi)

d
i=1 (see Fig. 1).

Let x ∈ Ω and t ∈ [0, T ] be the spatial and time variables, respectively. In order to simplify the writing, we do not
indicate the dependence of the functions on x and t . Moreover, a dot above a variable represents its derivative with respect
to the time variable.

Let u = (ui)
d
i=1 ∈ Rd, σ = (σij)

d
i,j=1 ∈ Sd and ε(u) = (εij(u))di,j=1 ∈ Sd denote the displacement field, the stress tensor

and the linearized strain tensor, respectively. We recall that

εij(u) =
1
2


∂ui

∂xj
+

∂uj

∂xi


, i, j = 1, . . . , d.

The body is assumed viscoelastic and it satisfies the following constitutive law (see, for instance, [1]),
σ = Aε(u̇) + Bε(u), (1)

where A = (aijkl) and B = (bijkl) are the fourth-order viscous and elastic tensors, respectively.
We turn now to describe the boundary conditions.
On the boundary part ΓD we assume that the body is clamped and thus the displacement field vanishes there (and so

u = 0 on ΓD × (0, T )). Moreover, since the density of traction forces fF is applied on the boundary part ΓF , it follows that
σν = fF on ΓF × (0, T ).

Finally, the contact is assumed with a deformable obstacle and so, the well-known normal compliance contact condition
is employed for its modeling (see [31,12]); that is, the normal stress σν = σν · ν on ΓC is given by

−σν = p(uν − s),
where uν = u · ν denotes the normal displacement in such a way that, when uν > s, the difference uν − s represents the
interpenetration of the body’s asperities into those of the obstacle. The normal compliance function p is prescribed and it
satisfies p(r) = 0 for r ≤ 0, since then there is no contact. As an example, one may consider

p(r) = cp r+,
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