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a b s t r a c t

Inmany phase-change problems of practical interest, it is important to knowwhen a phase
is depleted, a quantity referred to as the extinction time; however, there are no numeri-
cal schemes that are able to compute this with any degree of rigour or formal accuracy. In
this paper, we develop such a scheme for the one-dimensional time-dependent problem
of an evaporating spherical droplet. The Keller box finite-difference scheme is used, in tan-
demwith the so-called boundary immobilization method. An important component of the
work is the careful use of variable transformations that must be built into the numerical
algorithm in order to preserve second-order accuracy in both time and space, in particular
as regards resolving a square-root singularity in the droplet radius as the extinction time
is approached.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem of the transient heating of an evaporating spherical droplet, as considered recently in [1], constitutes a
phase-change (Stefan) problem that is posed on a domain initially of finite extent which vanishes after a finite time, termed
hereafter as the extinction time. Whilst this situation is prevalent for evaporating drops [2], it is not the only practical
situation in which this occurs: other examples are the melting or freezing of spheres [3–8], the solidification of metal in
continuous casting processes [9–13], the region containing oxygen in biological tissue [14–17], and in the course of drug
diffusion through polymeric spheres [18].

Whilst there exist many numerical methods for solving Stefan problems in general, there are none which are able to
compute the extinction timewith any level of rigour or accuracy. Indeed, whilstMitchell et al. [1] went as far as to determine
analytically that the radius of the droplet, R, would decrease with time, t , as

R (t) ∼ (te − t)1/2 , (1)

where te is the extinction time, they stopped their computations before R actually reached zero; this is also typically the
case elsewhere [8,19].

Thus, the purpose of this paper is to devise a numerical scheme that is not only able to solve the Stefan problem accurately
for t < te, but is also able to calculate te and to recover extinction behaviour of themoving boundary; in line with our recent
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work on the use of the boundary immobilization method in tandem with the Keller box scheme for the numerical solution
of Stefan problems [20–23], we once again seek to ensure that the temperature, its spatial derivative, R (t) and te are all
second-order accurate. To illustrate the idea, we will use the problem considered in [1] as an example.

The layout of this paper is as follows. In Section 2, we briefly describe the relevant equations given in [1], whereas in
Section 3 we provide the auxiliary analysis that is necessary to improve the earlier numerical scheme. In Section 4, we
present and discuss the new results, and conclusions are drawn in Section 5.

2. Mathematical formulation

2.1. Governing equations

A liquid fuel droplet, initially of radius R0 and at temperature T0, is immersed into a homogeneous hot gas at constant
temperature, Tg , that is greater than T0. Heat transfer within the droplet is assumed to occur by conduction alone; the
effects of thermal radiation are ignored here, an assumption justified and discussed in more detail in [2]. At the surface of
the droplet, evaporation and convection are assumed respectively to be the dominant cooling and heatingmechanisms, and
the radius of the droplet, R(t), is expected to decrease with time t , if the effects of thermal swelling are ignored.

More details of the derivation are given in [1] but, for completeness, we summarize them now. The droplet temperature,
T (r, t), is governed by the heat conduction equation in spherical coordinates,
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, 0 ≤ r < R(t), 0 ≤ t ≤ te, (2)

where r is the distance from the centre of the droplet, cl is the specific heat capacity of the liquid, kl is its thermal conductivity
and ρl its density. At this stage we introduce κ = kl/ρlcl as the thermal diffusivity of the liquid fuel, for brevity. In addition,
te is the time taken for the droplet to evaporate completely.

For boundary conditions, we have, at r = 0,

∂T
∂r

= 0, (3)

which expresses spherical symmetry and ensures that the temperature is bounded at r = 0.
At r = R(t), we equate the conductive heat flux to the heat lost due to convective and evaporative cooling. This

gives

kl
∂T
∂r

+ h(T − Tg) = ρlLṘ(t), (4)

where L is the specific heat of evaporation, and h(t) is the convection heat transfer coefficient, defined by h(t) = kg/R(t),
with kg as the thermal conductivity of the gas. Note that the dot denotes differentiation with respect to t .

The moving boundary at r = R(t) is controlled by fuel vapour diffusion from the droplet surface, and satisfies [24]

Ṙ = −
kg ln(1 + BM)

ρlcgR
, (5)

where cg is the specific heat capacity of the gas, BM = Yfs/(1 − Yfs) is the Spalding mass transfer number, and Yfs is the
mass fraction of fuel vapour near the droplet surface:

Yfs =
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Pfs

− 1
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−1

. (6)

Here, Pg and Pfs are the ambient gas pressure and the pressure of saturated fuel vapour near the surface of the droplet,
respectively, and Mg and Mf are the molar masses of the gas, here assumed to be air and fuel. The variable Pfs is calculated
from the Clasius–Clapeyron equation as

Pfs = exp

a −

b
Ts − 43


, (7)

where a and b are constants to be given for specific fuels and Ts = T (R(t), t) is the surface temperature of the fuel droplet.
Finally, the initial conditions are

T (r, 0) = T0, R(0) = R0, (8)

where T0 and R0 are constant.
Wemust solve the coupled equations (2) and (5) to determine T (r, t) and R(t), using the initial and boundary conditions

specified above, noting that Pfs involves the unknown surface temperature Ts.
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