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h i g h l i g h t s

• A new framework for the numerical solution of highly oscillatory integrals is proposed.
• The integrals are bifurcated in the neighborhood of stationary point.
• The integral on the smaller subinterval is solved by hybrid functions and Haar wavelets.
• The integral on the longer subinterval is solved by the meshless method with MQ radial basis functions.
• Convergence analysis of the proposed methods is performed.
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a b s t r a c t

In this paper new algorithms are being proposed for evaluation of highly oscillatory inte-
grals (HOIs) with stationary point(s). The algorithms are based on modified Levin quadra-
ture (MLQ) with multiquadric radial basis functions (RBFs) coupled with quadrature rules
based on hybrid functions of order 8 (HFQ8) and Haar wavelets quadrature (HWQ) (Aziz
et al. 2011). Part of the new procedure presented in this paper is comprised of transplant-
ing monomials (which are used in the conventional Levin method) by the RBFs. The linear
and Hermite polynomials based quadratures (Xiang, 2007) are being replaced by the new
methods based on HWQ and HFQ8 respectively. Both themethods aremergedwithMLQ to
obtain the numerical solution of highly oscillatory integrals having stationary points. The
accuracy of the new methods is neither dampened by presence of the stationary point(s)
nor by the large value of frequency parameter ω. Theoretical facts about the error analysis
of the new methods are analyzed and proved. Numerical examples are included to show
efficiency and accuracy of the new methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Oscillatory integrals occur inmany practical applications. These include diffraction theory and optics in physics, quantum
chemistry, image analysis, signal processing, electrodynamics, computerized tomography and fluid mechanics. Oscillatory
integrals are also very common in the Fourier analysis which are widely used in science and engineering. Closed form
solutions of HOIs are rarely available, hence the viable way left is to solve them numerically. Numerical solution of the
oscillatory integrals and the integrals having stationary points is challenging for the conventional numerical methods like
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trapezoidal rule, Simpson rule and Gauss–Legendre quadrature etc. Thesemethods become ineffective and computationally
intensive when used for numerical solution of the HOIs. The inherent reason for the failure of these methods is that in the
case of high frequency integrands, the quadrature points cannot match the frequency of the oscillations.

In the literature, a few numerical algorithms are reportedwhich are specially designed for numerical solution of the HOIs.
This area is relatively new and is catching the attention of the researchers. Further improvements are needed in the existing
algorithms to cope with the challenges arising in the numerical solution of HOIs. In recent years, steady and substantial
growth has been observed in this area. Some of the relevant work reported so far in this field include [1–11].

In [4], Levin proposed a novel method for numerical solution of the HOIs. This work has been followed by some more
contributions in the form of [12,2,13,14], which are being aimed at the numerical solution of non-oscillatory integrals and
HOIs with and without stationary point. These methods, if correctly utilized can exhibit good accuracy and convergence
with less computational cost for larger values of the frequency parameter.

The Filon-type of methods [7–9,5,10,11,15] which are meant for efficient evaluation of the HOIs in the asymptotic sense.
These methods are efficient, if the k-moments, I(xk) =

 b
a xkeiwg(x)dx are easily computable, which is sometimes counted

as the limitations of these methods as well. Similarly, numerical methods designed for HOIs which are based on asymptotic
techniques like the method of stationary phase, the method of steepest descent and related saddle point methods are the
part and parcel of existing literature.

In this paper, we will consider the standard form of one-dimensional highly oscillatory integral (HOI) defined on the
interval [a, b] as:

I =

 b

a
f (x)eiωg(x)dx, (1)

where the function g(x) has necessarily critical point(s) in the interval [a, b]. In the above integral, the parameter ω
is the frequency parameter whose large value makes the conventional methods ineffective. The functions f and g are
assumed to be non-oscillatory and smooth functions, often called the amplitude and the phase functions of the integral
respectively.

Recently, the author in [6] has proposed a more sophisticated Levin-type hybrid method for obtaining an accurate
numerical solution of HOIs having stationary points. In the paper [6], a Levin’s type of collocation method is coupled with
Gaussian quadrature having linear and Hermite basis to solve HOIs containing stationary point(s). The domain interval is
bifurcated into two subintervals, the one containing stationary point(s) is the smaller interval andwhere numerical solution
is found by Gaussian quadrature. In the remaining subinterval (the bigger one), which is free from stationary point(s), the
numerical solution is obtained by the conventional Levin type method with the monomial basis [4]. The proposed methods
are being accompanied by the detailed error analysis as well.

In the presentworkwe retain the same principle of interval subdivision as proposed in [6]. Improvements in accuracy can
be achieved if the quadrature based on linear andHermite polynomials are replaced by newquadrature rulesHWQandHFQ8
[2,12,13], respectively. Similarly, good accuracy can be obtained if the conventional Levin quadrature is replaced by MLQ
[2,13]. HFQ8 approximates the integral on the sub-interval that contains stationary point(s) andMLQ is used to approximate
the integral on the sub-interval that contains no stationary point(s). For the sake of simplicity, we assume that x = 0 is the
unique critical point of the integrand, that lies inside or at the end point of the interval [a, b] and ω ≫ 1.

In the present paper we have found out the theoretical error bounds for our methods based on hybrid functions and
Haar wavelets which were not explored in our earlier papers [2,12,13]. These findings have been presented in the form of
Theorem 1. The error bound derived for the hybrid and Haar based algorithms are used in the error bound of the meshless
method. The new contribution is presented in the form of Theorem 2.

The rest of the paper is organized as follows. In Section 2 the two methods are described along with error analysis. In
Section 3, numerical results and analysis about the performance of the methods are included. The paper contains some
conclusions at the end.

2. Implementation procedure and error analysis

In this section we discuss the implementation procedure and the error bounds of HFQ8, HW and MLQ. The theoretical
results are summarized in the following sub-sections.

2.1. Hybrid functions

The orthogonal set of hybrid functionsψij(x), i = 1, 2, . . . , n and j = 0, 1, . . . ,m− 1 is defined on the interval [0, 1) as

ψij(x) =

Lj(2nx − 2i + 1), for x ∈


i − 1
n
,
i
n


0, otherwise,

(2)
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