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h i g h l i g h t s

• A tool for stochastic evaluation of nested sums with many indexes is proposed.
• The Jarzynski equality is borrowed from the context of molecular thermodynamics.
• Addends build-up is seen as homologous of driven transformations in real systems.
• Numerical tests demonstrate the high performance of the method.
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a b s t r a c t

A stochasticmethodology for the numerical estimation of sums over a very large number of
addends with huge spread of magnitudes is presented as continuation of our recent work
in the field of multidimensional integration. The approach is based on the employment of
Jarzynski’s equality, borrowed from the physical context of thermodynamics of small sys-
tems (mainly macromolecular) subjected to driven transformations while all uncontrolled
degrees of freedom freely fluctuate. An abstract interpretation of such an equality enables
us to convert the sum into an exponential average over the ‘‘computational work’’ required
tomorph the addends from an initial set of values (taken all equal for simplicity) up to their
actual values while the summation indexes are stochastically sampled by means of Impor-
tance Sampling Monte Carlo moves. A series of numerical tests reveals the high efficiency
of the method in performing summations otherwise unfeasible.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a relatedwork [1]wehave presented a novel tool to performmultidimensional integration of bounded functions f (x) in
hyper-rectangles I , i.e., evaluation of


I dxf (x). The approach belongs to the category of ‘‘stochastic integration’’, but exploits

an abstract interpretation-usage of Jarzynski’s equality (JE in the following) which was derived in the thermodynamic
context of free-energy-difference evaluations for (macro)molecular systems subjected to steered transformations along
some coordinate(s) of interest [2,3]. Our starting point was the analogy between real deterministic transformations driven
by an external apparatus, which controls some selected structural parameters of the system while all the other degrees of
freedom are free to fluctuate (physical context), and guided morphing of the integrand function ‘‘while’’ the integration
domain is stochastically explored (computational context). Such a parallelism has led us to ‘‘borrow’’ the JE from its original
physical context and exploit it to evaluate themultidimensional integral from the amounts of ‘‘computationalwork’’ (i.e., the
homologous of the proper work done by the external apparatus in real transformations) to perform the morphing of the
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integrand function in a series of repeated runs. The methodology was found to be very efficient in a series of tests, in
the sense that high-dimensional integrations otherwise unfeasible could be performed with good accuracy in acceptable
computational times.

In this communication we go forward in our project to treat a computational problem even farther from the original
pertinence of the JE. Namely, we develop a strategy aimed to the efficient evaluation of sums S =

nadds
i=1 fi over finite but

possibly very large number of addends, nadds. In all generality, each single term fi, known or calculable on request, can be
positive, negative, or null; the values can also show a very wide distribution of magnitudes. Although the approach here
developed is rather general, we shall focus on a specific but widespread category of summations whose number of addends
rapidly increases, namely nested sums of the kind

S =

i1


i2


i3

· · ·


iN

fi (1)

where i = (i1, i2, . . . , iN) is the cumulative array of indexes whichmay run over different sets of entries. Also, N can be very
large (several tens). We shall show that the cost of the computation can be highly lowered from the a priori power-law on
N (which makes the calculation rapidly unfeasible) down to a roughly linear dependence on the number of indexes.

Here we anticipate the main lines of the strategy. The basic idea is to apply a suitable ‘‘growth’’ of the addends starting
from the situation where they are all equal to 1, up to the final situation (morphed addends) where they take the actual
values. ‘‘During’’ such a controlled morphing, the addends are stochastically drawn by means of Metropolis–Hastings
Importance Sampling Monte Carlo (IS-MC in the following) moves [4–6]. The well-known IS-MC sampling scheme allows
the random exploration of the ensemble of sites by means of moves whose acceptance depends on the relative weight
(‘‘stability’’) of the starting–arrival configurations. The term ‘‘site’’ will be used through the text as synonymous of a
configuration i. At the beginning, the moves are unbiased and almost all accepted due to the flat landscape of values, but, as
the morphing distinguishes the terms, a ‘‘trajectory’’ visits preferentially the sites corresponding to most relevant addends
and possibly remains entrapped in one of them (or within a subset of quasi-degenerate addends mutually reachable via
IS-MCmoves). Intuitively, the gradual growing of the addends, that is the gradual development of their spread ofmagnitudes,
allows the jumping among sites to last on average for a larger number of steps (with respect to standard IS-MC sampling)
before the entrapping becomes permanent. Up to here, the morphing would only allow a more effective exploration of the
addends pattern. The further step consists in freely using the JE to get the sum from the exponential average (taken over a
sufficiently large ensemble of runs) of the ‘‘computational work’’ of morphing (to be defined and evaluated along each IS-MC
chain).

To make this presentation self-contained, a brief outlook of the JE in its proper physical context is due.1 In the essence,
the JE enables one to evaluate the ratio Z2/Z1 between the so-called configurational partition functions [8] of a physical
system in two equilibrium states ‘‘1’’ and ‘‘2’’ at the same temperature but structurally distinguished by the values of a given
set of parameters 3. Namely, the JE gives Z2/Z1 = ⟨exp(−w/kBT )⟩ where w is the amount of work that has to be done
by an external apparatus to drive the system from 31 to 32 following a certain (but freely chosen) protocol 3(t) starting
from initial configurations picked at the equilibrium ‘‘1’’. T is the absolute temperature, and kB is the Boltzmann constant.
The control is exerted only on some parameters, while all other variables are free to fluctuate during the transformation.
For this reason a distribution of path-dependent works is found, over which the above mentioned average is taken. To
ensure the validity of the JE, the following conditions must be met: (i) any starting configuration must be sampled within
the equilibrium probability at ‘‘1’’, (ii) the fluctuations on the uncontrolled variables are a Markovian (memory-less)
process [9], and (iii) if the protocol is stopped at some time t∗, the system relaxes to the underlying equilibrium distribution
corresponding to the set of structural parameters 3(t∗). In practice, the above average is performed over a finite number of
runs, that is Z2/Z1 ≃ N−1runs

Nruns
j=1 exp(−wj/kBT ). The rate of convergence to the exact limit depends on the intrinsic nature

of the system and on the kind of morphing protocol; however, it is normally found that a good estimate of Z2/Z1 can be
obtained with a limited number of runs, so that such a non-equilibrium tool outperforms the much more demanding direct
calculation (via integrations or summations) of the single Z1 and Z2. The interested Reader can find the presentation of the
JE in excellent reviews of Refs. [3,10,11]; a clear derivation of the JE can be found in Section II of Ref. [12].

In the present computational context, by analogy, Z1 and Z2 become respectively the values of the summation on the
initial non-morphed state and on the final morphed state of addends; the driven transformation becomes the chosen
morphing of the addends; the fluctuations over the uncontrolled variables become the IS-MC stochastic jumps amongst
the sites of the summation indexes. The ‘‘computational work’’ needs to be properly expressed as it will be shown in the
next section. The elaboration of such a naïve picture is given what follows.

In the next section we illustrate the method, first starting from the case of positive-valued addends and then extending
the approach to the general case of sums with positive, negative and null terms. Since most of the key-steps have been
presented in Ref. [1] for the related problem of multidimensional integration, and since the adaptation is straightforward,
here we give only the main lines. In Section 3 we test the approach on some case-studies (conceived in a way that the
reference exact result can be easily obtained), and show that summations otherwise unfeasible via addend-by-addend

1 The Reader could be interested in comparing the JEwith the statistical tool known as ‘‘Annealed Importance Sampling’’ [7]when it is applied to evaluate
normalizing constants of distribution functions [1].
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