
Journal of Computational and Applied Mathematics 278 (2015) 293–305

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Discrete Legendre spectral projection methods for
Fredholm–Hammerstein integral equations
Payel Das a,∗, Gnaneshwar Nelakanti a, Guangqing Long b

a Department of Mathematics, Indian Institute of Technology, Kharagpur- 721 302, India
b Department of Mathematics, GuangXi Teachers Education University, Nanning 530001, PR China

a r t i c l e i n f o

Article history:
Received 12 March 2014
Received in revised form 3 September 2014

Keywords:
Hammerstein integral equations
Spectral method
Discrete Galerkin
Discrete collocation
Numerical quadrature
Convergence rates

a b s t r a c t

In this paper we discuss the discrete Legendre Galerkin and discrete Legendre collocation
methods for Fredholm–Hammerstein integral equations with smooth kernel. Using suffi-
ciently accurate numerical quadrature rule, we obtain optimal convergence rates for both
discrete Legendre Galerkin and discrete Legendre collocation solutions in both infinity and
L2-norm. Numerical examples are given to illustrate the theoretical results.
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1. Introduction

Let X = L2[−1, 1] or C[−1, 1] and consider the following Hammerstein integral equation

x(t)−

 1

−1
k(t, s)ψ(s, x(s)) ds = f (t), −1 ≤ t ≤ 1, (1.1)

where k, f and ψ are known functions and x is the unknown function to be determined. Hammerstein integral equations
arise as reformulations of various physical phenomena in different branches of study such as vehicular traffic, biology,
economics, etc.

There has been a notable interest in the numerical analysis of solutions of Hammerstein integral equations (1.1) (see
[1–7]). The Galerkin, collocation, Petrov–Galerkin, degenerate kernel and Nyström methods are most frequently used
projection methods for solving the equations of type (1.1) (see [8,1,9–13]). We are mainly interested in discrete Galerkin
and discrete collocation methods in this paper.

Let Xn be a sequence of finite dimensional approximating subspaces of X and Pn be either orthogonal or interpolatory
projections from X onto Xn. Then in Galerkin method (Pn is orthogonal projection) or in collocation method (Pn is
interpolatory projection), the Hammerstein integral equation (1.1) is approximated by

xn − PnKψ(xn) = Pnf , (1.2)

where Kψ(x)(t) =
 1
−1 k(t, s)ψ(s, x(s)) ds. Now to apply these projection methods for solving Eq. (1.1), one can use either

piecewise polynomial or global polynomials as a basis function of the approximating subspaces.
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In the case of piecewise polynomial based projection methods, we consider −1 = t0 < t1 < · · · < tn = 1, a partition of
[−1, 1] and let h = max{ti+1 − ti : 0 ≤ ti ≤ n− 1} denote the norm of the partition. We assume that h → 0, as n → ∞. In
this case the approximating subspaces Xn = Sνr,n, the space of all piecewise polynomials of order r (i.e., of degree ≤ r − 1)
with break points at t1, t2, . . . , tn−1 and with ν continuous derivatives, −1 ≤ ν ≤ r − 2. Here ν = 0 corresponds to the
case of continuous piecewise polynomials. If ν = −1, there is no continuity requirements at the break points, in which case
we arbitrarily take xn ∈ Xn to be left continuous at t1, t2, . . . , tn and right continuous at t0. Note that the dimension of Xn is

N = nr − (n − 1)(ν − 1). (1.3)

Under some suitable conditions on the kernel k(., .) and the right hand side function f of the Eq. (1.1), it is known that the
orders of convergence for Galerkin and collocation solutions are O(hr) (see [11,14,13]). However, to get better accuracy in
piecewise polynomial based projection methods, the number of partition points should be increased. Hence it is evident
from (1.3) that in such cases, one has to solve a large system of nonlinear equations, which is computationally very much
expensive.

To overcome the computational complexities encountered in the existing piecewise polynomial based projection meth-
ods, we apply polynomially-based projection methods to nonlinear Fredholm integral equations (see [15,16]). In [16], the
Galerkin and collocation methods were considered for solving Hammerstein integral equation (1.1) using Legendre polyno-
mial basis functions and it was proved that the Legendre Galerkin and Legendre collocation solutions have same orders of
convergence, O(n−r) in both infinity and L2-norm, where n is the highest degree of polynomial employed in the approxima-
tion and r is the smoothness of the kernel, the nonlinear function, the right hand side function and the solution. However,
the projection methods (1.2) lead to algebraic nonlinear system, in which the coefficients are integrals, appeared due to
inner products and integral operator K. These integrals are almost always evaluated numerically. However, in all the above
mentioned papers, it was assumed that the integrals appearing in the approximation scheme are evaluated exactly. Thus, in
all these methods the effect of error due to numerical integration has been ignored. This motivates to solve these nonlinear
systems after replacing the integrals by appropriate numerical integration formula. Replacement of these integrals by nu-
merical quadrature rule gives rise to the discrete projectionmethods. The effect of quadrature error on the convergence rates
of the approximate solution is now considered in these discrete projection methods (see [8,17,9,18–21]). Discrete projec-
tion methods for Fredholm nonlinear integral equations with spline bases and their superconvergence results were studied
by many authors such as Atkinson and Potra [17], Atkinson and Flores [9], Kumar and Sloan [21] and many others. In [8],
Atkinson and Bogomolny have shown that sufficiently accurate quadrature rules can preserve the rates of convergence of
the Galerkin method with spline bases.

In this paper, we will apply discrete Galerkin and discrete collocation methods to solve Fredholm–Hammerstein integral
equation (1.1) using global polynomials. We choose the approximating subspaces Xn to be global polynomial subspaces
of degree ≤ n, which has dimension n + 1. The advantage of using global polynomials is that the projection method
(1.2) will imply smaller nonlinear systems, something which is highly desirable in practical computations. In particular
here, we choose to use Legendre polynomials, which can be generated recursively with ease and possess nice property of
orthogonality. Hence from the above discussion it is clear that Legendre polynomials are less expensive computationally
compared to piecewise polynomial basis functions. Our purpose in this paper is to obtain similar convergence results in
polynomially-based discrete Galerkin and discrete collocation methods for Fredholm–Hammerstein integral equation (1.1)
with smooth kernels as in the case of piecewise polynomial based discrete Galerkin and discrete collocation methods. By
choosing a numerical quadrature rule appropriately, we show that the discrete Legendre Galerkin and discrete Legendre
collocation solutions of the Eq. (1.1) converges with the optimal order O(n−r) in both infinity and L2-norm, n being the
highest degree of the Legendre polynomial employed in the approximation and r is the smoothness of the kernel k, the
nonlinear function ψ , the right hand side function f and the solution.

The organization of this paper is as follows. In Section 2, we set up notations and discuss the discrete Legendre Galerkin
and discrete Legendre collocationmethods for Fredholm–Hammerstein integral equations with smooth kernel. In Section 3,
we discuss the existence of the approximate solutions and their convergence rates. In Section 4, we illustrate our results by
numerical examples. Throughout this paper, we assume that c is a generic constant.

2. Discrete Legendre Galerkin and discrete Legendre collocation methods: Hammerstein integral equations with
smooth kernel

In this section, we describe discrete Galerkin and discrete collocation methods for solving Fredholm–Hammerstein
integral equations using global polynomial basis functions.

Let X = C[−1, 1] or L2[−1, 1], with norms ∥ · ∥∞ and ∥ · ∥L2 . For u ∈ X, we define

∥u∥∞ = sup
t∈[−1,1]

|u(t)| and ∥u∥L2 =

 1

−1
|u(t)|2dt

 1
2

.

Consider the following Hammerstein integral equation

x(t)−

 1

−1
k(t, s)ψ(s, x(s)) ds = f (t), −1 ≤ t ≤ 1, (2.1)
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