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a b s t r a c t

We present a Tikhonov parameter choice approach for three-dimensional reconstructions
based on a maximum product criterion (MPC) which provides a regularization parameter
located in the concave part of the L-curve in log–log scale. Our method, baptized Improved
Maximum Product Criterion (IMPC), is an extension of the MPC method developed by
Bazán et al. for two-dimensional reconstructions. In the 3D framework, IMPC computes the
regularization parameter via a fast iterative algorithm and requires no a priori knowledge
of the noise level in the data. It is applied on the linear sampling method for solving the
electromagnetic inverse medium problem in the 3D framework. The effectiveness of IMPC
is illustrated with numerical examples involving more than one scatterer.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this work we shall consider the scattering of a time harmonic electromagnetic wave with frequency in the resonance
region by a finite number of three dimensional scatterers each of which is a penetrable isotropic medium. The inverse
scattering problem we are considering is related to the determination of the shape of a penetrable scatterer in R3.

The approach we shall use to solve the inverse electromagnetic scattering problem is a combination of the well known
linear sampling method originally developed in the acoustic context by Colton and Kirsch [1] and an improved version of
the maximum product criterion (MPC) developed by Bazán et al. [2] for 2D reconstructions. It is widely known that the
linear sampling method does not require a priori information about either the boundary condition or the connectivity of the
scatterer, however it does require multistatic data at a single frequency. Due to the ill-posedness of the inverse problem,
the linear sampling method yields an ill-conditioned system of linear equations whose solution requires a regularization
method in order to handle correctly the presence of noise in the data. In particular, this solution requires the use of Tikhonov
regularizationmethod equippedwithMorozov’s generalized discrepancy principle as parameter choice rule [3,1,4–8],which
generally involves the computation of the zeros of the discrepancy function at each point of the grid. In addition, the noise
level in the data should be known a priori, something that in real life applications is not the case in general.

For electromagnetism, the linear sampling method has already been analyzed for perfect conducting scatters [9],
imperfect conductors with impedance boundary data [7] and penetrable scatterers [10]. In particular, as presented in [10],
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the mathematical justification of the method is based on the formulation of an interior transmission problem for which a
weak solution is shown to exist. Then the theoretical justification follows by extending to electromagnetics methods used
for the acoustic problem.

The Maximum Product Criterion (MPC), originally developed for two dimensional reconstructions [2], employs compu-
tation of the regularized solution norm and the corresponding residual norm and selects the parameter which maximizes
the product of these norms as a function of the regularization parameter; its main virtue is that it constructs regularized
solutions of either large or small norm depending on whether a certain inclusion condition is satisfied or not. MPC however
applied to 3D reconstruction problems may fail due to the existence of several local maxima. To overcome this difficulty
the authors developed a variant of MPC, the Improved Product Criterion (IMPC), which via a fast and efficient algorithm
chooses as regularization parameter the critical point associated with the largest local maximum of the product. In addition
as with MPC, IMPC does not depend on user specified input parameters (like subspace dimension or truncating parameter)
and requires no a priori knowledge of the noise level.

Weorganize our paper as follows. Section2will be devoted to the formulation of the problemand abrief description of the
linear samplingmethod in the electromagnetic context. Subsequently, Section 3will deal with the improved version ofMPC,
the IMPC as a parameter choice rule. In particular we will be concerned with theoretical properties on which IMPC relies on
as well as with its implementation within the framework of the linear sampling method. In order to show the effectiveness
of our method, in Section 4, we will present numerical examples for the case of penetrable three dimensional scatterers
and we will compare the reconstructions obtained via IMPC with the ones obtained by means of Morozov’s generalized
discrepancy principle (GDP). We will finally list our conclusions in Section 5.

2. The linear sampling method

Webegin by considering the direct scattering problemof a timeharmonic electromagneticwave by a penetrable isotropic
medium D ⊂ R3 which can be formulated as the problem of finding an electric field E and a magnetic field H such that
E,H ∈ C1(R3) and

curlE − ikH = 0 and curlH + iknE = 0 in R3 (1)

where n ∈ C1,α(R3) is a complex valued function with 0 ≤ α ≤ 1 and n(x) = 1 outside D. The total field is given as

E = E i
+ Es and H = H i

+ Hs (2)

where Es,Hs are the scattered fields satisfying the Silver–Müller radiation condition

lim
r→∞

(Hs
× x − rEs) = 0 (3)

uniformly in x̂ =
x
|x| , where r = |x| and the incident field is the plane wave

E i(x) =
i
k
curlcurl peikx·d = ik(d × p) × deikx·d, (4)

H i(x) = curl peikx·d = ikd × peikx·d, (5)

where the wavenumber k is positive, d is a unit vector giving the direction of propagation and p is the polarization vector.
The existence and uniqueness of a solution to (1)–(3) can be found in [11]. From the second Stratton–Chu formula it follows
that

Es(x) =
eikr

r


E∞(x̂, d, p) + O


1
r


as r → ∞ (6)

where E∞ is the electric far field pattern. The inverse medium problem for electromagnetic waves is to determine D from
E∞(x̂, d, p) for x̂, d in the unit sphere Ω, p ∈ R3, and different values of k. As indicated in [10], E∞ is infinitely differentiable
as a function of its arguments and as a function of x̂ is tangential to the unit sphere Ω .

We now introduce the space

L2t (Ω) = {g : Ω → C3
| g ∈ L2(Ω), g · x̂ = 0, for x̂ ∈ Ω}

of tangential L2 fields in Ω . The electric far-field operator F : L2t (Ω) → L2t (Ω) is then defined by

(F g)(x̂) =


Ω

E∞(x̂, d, g(d)) ds(d), x̂ ∈ Ω. (7)

Now let E∞(x̂, z, q) be the electric far-field pattern of an electric dipole located in z ∈ D and oriented along q:

Ee(x, z, q) =
i
k
curlxcurlxqΦ(x, z) (8)

He(x, z, q) = curlxqΦ(x, z) (9)



Download English Version:

https://daneshyari.com/en/article/4638828

Download Persian Version:

https://daneshyari.com/article/4638828

Daneshyari.com

https://daneshyari.com/en/article/4638828
https://daneshyari.com/article/4638828
https://daneshyari.com

