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a b s t r a c t

In this paper, a semilocal convergence result in Banach spaces of an efficient fifth-order
method is analyzed. Recurrence relations are used in order to prove this convergence, and
some a priori error bounds are found. This scheme is finally used to estimate the solution
of an integral equation and so, the theoretical results are numerically checked. We use this
example to show the better efficiency of the current method compared with other existing
ones, including Newton’s scheme.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Newton’smethod and its variants are used to solve nonlinear equations of the form F(x) = 0. This equation can represent
differential equations, integral equations or a systemof nonlinear equations. The convergence of Newton’smethod in Banach
spaceswas establishedbyKantorovich in [1]. The convergence of the sequence obtainedby the iterative expression is derived
from the convergence ofmajorizing sequences. This technique has been used bymany authors in order to establish the order
of convergence of the variants of Newton’s methods (see, for example, [2,3]).

Rall in [4] suggested a different approach for the convergence of these methods, based on recurrence relations. Amat,
Hernández and Romero [5,6], Ezquerro and Hernández [7], Gutiérrez and Hernández [8,9], Parida and Gupta in [10] and
Candela and Marquina [11,12] used this idea to prove the semilocal convergence for several methods of different orders.

In this paper, we analyze the semilocal convergence of a fifth-order method M5 considered in [13] for solving systems
of nonlinear equations. In order to get this aim, we use the technique of recurrence relations, that consists of generating a
sequence of positive real numbers that guarantees the convergence of the iterative scheme in Banach spaces, providing a
suitable convergence domain. This technique allows us to establish weak semilocal convergence conditions for an iterative
method with fifth-order of convergence. Even more, we get a result of semilocal convergence under the same conditions of
Kantorovich Theorem for Newton’s method, which has quadratic convergence. This allows us to apply the fifth-order con-
vergence method for solving nonlinear equations F(x) = 0 under the same conditions that assures us the convergence of
Newton’s method.

Another important aspect of this work is the comparative study of the efficiency of the proposed scheme with the one of
other known high-order methods, such as Jarratt’s method (see [14]) and the one introduced byWang et al. in [15], by using
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the classical efficiency index defined by Ostrowski in [16] and the computational efficiency index described by Traub in [17].
In addition, we include in our comparative study of the efficiency the most used iterative process, the Newton method.
Noting that the proposed iterative process M5 is also more efficient than Newton’s method when trying to approximate a
solution of a system with more than two equations.

Finally, we make some test on integral equations in order to check the theoretical results. Noting that the proposed
method M5 is more efficient for the approximation of a solution.

The rest of the paper is organized as follows: in Section 2 we describe the recurrence relations and the properties needed
to prove the semilocal convergence of method M5 in Section 3. In Section 4 the comparative analysis of the efficiency is
made. Finally, in Section 5 an application on integral equation of mixed Hammerstein type is illustrated.

2. Recurrence relations

Let X , Y be Banach spaces and F : Ω ⊆ X → Y be a nonlinear twice Fréchet differentiable operator in an open convex
domain Ω . The fifth-order method M5, which semilocal convergence we are going to study can be found in [13] and its
iterative expression is:

yn = xn − ΓnF(xn),
zn = yn − 5ΓnF(yn),

xn+1 = zn −
1
5
Γn (−16F(yn) + F(zn)) ,

(1)

where Γn =

F ′(xn)

−1, for n ∈ N.
Let us assume that the inverse of F ′ at x0, F ′(x0)−1

= Γ0 ∈ L(Y , X) exists at some x0 ∈ Ω , where L(Y , X) is the set of
bounded linear operators from Y into X .

In the following we will assume that y0, z0 ∈ Ω and

(i) ∥Γ0∥ ≤ β ,
(ii) ∥Γ0F(x0)∥ ≤ η,
(iii) ∥F ′(x) − F ′(y)∥ ≤ K∥x − y∥, x, y ∈ Ω ,

in order to obtain the recurrence relations that satisfy the steps that appear in the iterative process (1).
Notice that these are the classical Kantorovich’s conditions [1] for the semilocal convergence of Newton’s method.
Let us also denote by a0 = Kβη and define the sequence an+1 = anf (an)2g(an), where

f (x) =
1

1 − x(h(x) + 1)
, (2)

g(x) =
1
2
x + (x + 1)h(x) +

1
2
xh(x)2 (3)

and

h(x) =
1
2
x +

1
2
x2 +

5
8
x3. (4)

To study the convergence of {xn} defined by (1) to a solution of F(x) = 0 in a Banach space, we have to prove that {xn}
is a Cauchy sequence. To do this, we need to analyze some properties of sequence {an} and, previously, of the real functions
described in (2)–(4), respectively.

Lemma 1. Let f (x), g(x) and h(x) be the real functions described in (2)–(4). Then,

(i) f is increasing and f (x) > 1 for x ∈ (0, 0.6),
(ii) h and g are increasing for x ∈ (0, 0.6).

Lemma 2. Let f (x) and g(x) as before and a0 ∈ (0, 0.2931 . . .). Then,

(i) f (a0)2g(a0) < 1,
(ii) f (a0)g(a0) < 1,
(iii) the sequence {an} is decreasing and an < 0.2931 . . . , for n ≥ 0.

Proof. From the definition of functions f and g (i) follows trivially. From (i) and f (a0) > 1, we obtain (ii). We are going to
prove (iii) by induction on n ≥ 0. Firstly, from (i) and the definition of a1, we have that a1 < a0. Now, it is supposed that
ak < ak−1, for k ≤ n. Then,

an+1 = anf (an)2g(an) < an−1f (an)2g(an) < an−1f (an−1)
2g(an−1) = an,

as f and g are increasing and f (x) > 1.
Finally, for all n ≥ 0, an < 0.2931 . . . , since {an} is a decreasing sequence and a0 < 0.2931 . . . . �
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