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a b s t r a c t

Consistency and run-time are important questions in performing multiple linear regres-
sion models. In response, we introduce a new parallel maximum likelihood estimator for
multiple linear models. We first provide an equivalent condition between the method and
the generalized least squares estimator. We also consider the rank of projections and the
eigenvalue. We then present consistency when a stable solution exists. In this paper, we
describe several consistency theorems and perform experiments on consistency, outlier,
and scalability. Finally, we fit the proposed method onto bankruptcy data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multiple linear regression models (MLRMs) are widely used in many statistical problems. Several parallel methods and
specified criterion of chosen subsets have been proposed in recent years (see [1]) to improve run-time and computational
effect. We provide a brief overview of parallel methods that are useful for solving the MLRMs.

Mitchell and Beauchamp [2] created a parallel method for the subset selection problem using a Bayesian perspective.
Havránek and Stratkoš [3] considered parallel methods for the Cholesky factorization inmultiple linearmodels, and showed
that the methods’ performance is independent of the size of data sets.

Xu et al. [4] suggested a form of stochastic domain decomposition inmultiple linear models to improve performance and
to resist processor failure. The general concept of domain decomposition is decomposing the data so that the processors
have data sets of nearly the same sizes and computation times. The importance of size during parallel communication was
similarly considered.

Skvoretz et al. [5] experimentedwithMLRMs in social science research. The parallel component of their computationwas
computing for a covariance matrix through a single program multiple data stream. Different numbers of processors were
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used in the experiments, and the varying amounts of data were read from a disk. They found that the latter consideration
was critical in obtaining good performance.

Bouyouli et al. [6] developed global minimal and global orthogonal residual methods for MLRMs, all of which were block
Krylov subspace methods of parallel methods.

MLRMs allow for a highly effective parallel implementation, elegantly illustrating our point and encouraging further
development in theory and application. This work originates from the statistical analysis of multiple linear models [7] in
statistical tests and from several examples of parallelmaximum likelihood estimator (PMLE). Properties of stochastic domain
decomposition were studied for the maximum likelihood estimator (MLE) in multiple linear models.

We provide a general MLE in multiple linear models. Suppose that MLRMs have the following form:

Y = Xβ + ε, ε ∼ N(0, σ 2I), (1.1)
where X ∈ Rn×p is a known matrix of fixed rank, rank(X) = p, p ≪ n, Y ∈ Rn×1 is an observable random vector, β ∈ Rp×1

is a vector of unknown parameters, I ∈ Rn×n is a known unit matrix, and σ 2 is a positive unknown parameter.
The MLE is often used to estimate unknown parameters in multiple linear models. The MLE of β under the model (1.1)

is defined as

β̂ = argmin
β

(Y − Xβ)T (Y − Xβ). (1.2)

We then have

β̂ = (XTX)−1XTY . (1.3)
The PMLE method in (1.1) is as follows: first, (X, Y ) is sent to the r processor respectively; second, different elements of

(X, Y ) are acquired by stochastic domain decomposition in each processor, denoted as (Xi, Yi); the MLE is then computed,
the PMLE is obtained using the estimator in each processor. The PMLE method is a domain decomposition method, and has
a short run-time on large data sets. Although there are a number of existing methods for MLRM, the method is more faster,
and more robust in some cases.

We organized the rest of this paper as follows. In Section 2, we introduce the PMLE method (see [8]), and provides an
equivalence condition of the PMLE and a generalized least squares estimator. In Section 3, we consider first the rank of pro-
jections in the PMLEmethod, followed by the eigenvalue.We study the consistency of the PMLE in Section 4. In Section 5, we
illustrate the method through several experiments studies, including those on consistency, outlier and scalability. Experi-
ments with bankruptcy data are also provided. Section 6 discusses future research. The Appendix lists the technical results.

2. PMLE of MLRMs

In this section, we introduce the matrix form of the proposed PMLE in (1.1). We assume that Xi (i = 1, . . . , r) are the
subsamples of the observed sample X , where X ∈ Rn×1. Write

Xi = RiX, Ei = RT
i Ri, Ei = diag{α1, α2, . . . , αn}, rank{Ei} = n0 ≥ p, i = 1, . . . , r. (2.1)

Here, Ri is the projection operator.
n

i=1 αi = n0, αi ∼ B(n0, 1/n), E(αi) = n0/n. Note that

I ≤

r
i=1

Ei ≤ qI. (2.2)

Here q is the number of matrices Ei with a nonzero in the row.
Let Yi = RiY such that Yi = Xiβi + εi, E(εi) = 0, and

E(XTEiXβi|X) =
n0

n
XTXβi; E(XTEiY |X) =

n0

n
XTY , i = 1, . . . , r.

We write

β̂i = (XTEiX)−XTEiY , i = 1, . . . , r. (2.3)
Assume that

β̃ =
1
r

r
i=1

β̂i =
1
r

r
i=1

(XTEiX)−XTEiY , (2.4)

which is the PMLE in (1.1). Then the parallel estimator is a generalized least squares (GLS) method with domain decompo-
sition. In order to have a good understanding of the method, we give an illustration of the PMLE method in Fig. 1. Now we
give a following remark about the method.

We establish the conditions under which the covariance matrix Σ exists, such that the PMLE is equivalent to the GLS
estimator.

β̂G = (XTΣ−1X)−1XTΣ−1Y , (2.5)
where Σ ∈ Rn×n is a nonsingular matrix.
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