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a b s t r a c t

In this paper we obtain a priori and a posteriori error estimates for stabilized low-order
mixed finite element methods for the Stokes eigenvalue problem. We prove the conver-
gence of the method and a priori error estimates for the eigenfunctions and the eigenval-
ues. We define an error estimator of the residual type which can be computed locally from
the approximate eigenpair and we prove that, up to higher order terms, the estimator is
equivalent to the energy norm of the error. We also present some numerical tests which
show the performance of the adaptive scheme.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive procedures based on a posteriori error estimators have gained an enormous importance in the numerical ap-
proximation of partial differential equations. Several approaches, most of them focused on source problems, have been
considered to construct estimators based on the residual equations (see [1,2] and their references). Moreover, for the stan-
dard Laplace eigenvalue problem a simple and clear analysis has been obtained in [3,4], and there are some similar results for
other eigenvalue problems (see, for example, [5–8] and the references therein). However, there are few results concerning a
posteriori error estimates for the Stokes eigenvalue problem. In [9] the authors present an a posteriori error analysis for the
Stokes eigenvalue problem assuming that the schemes used in its finite element discretization are stable (as, for example,
the mini elements).

Despite the fact that the lower-order mixed finite elements for the Stokes equations violate the inf–sup condition, it is
well known that low-order velocity–pressure pairs have a relevant interest due to its simple and attractive computational
aspects (see [10] and the references therein). There are many stabilized finite element methods to counteract the lack of
stability (see, for example, [11–17]). In particular, Bochev, Dohrmann and Gunzburger proposed in [13] a new family of
stabilizedmethods, for the source Stokes problem, and proved that this simple and useful approach is unconditionally stable.
Based on this work, in [18] the authors introduce an a posteriori error indicator, for the source Stokes problem, and it yields
global upper and lower bounds on the error of stabilized finite element methods.

In this work we prove the convergence of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
andwe obtain optimal a priori error estimates for the eigenfunctions and the eigenvalues by using the spectral theory given
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in [19]. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate
eigenpair. We show its global reliability and local efficiency by proving that the estimator is equivalent to the energy norm
of the error up to higher order terms. We also present some numerical tests which allow us to show the good performance
of the error indicator and the adaptive algorithm.

The rest of the paper is organized as follows. In Section 2 we introduce the Stokes eigenvalue problem. In Section 3 we
present the stabilized low-order mixed finite element method and obtain L2 a priori error estimates. In Section 4 we prove
the convergence for the eigenfunctions and the eigenvalues. In Section 5 we introduce the a posteriori error estimator and
prove its equivalence with the energy norm of the error. In Section 6 we report some numerical examples which allow us
to assess the performance of the adaptive scheme.

2. Statement of the problem

Let Ω ⊂ R2 be an open, bounded and polygonal domain with boundary Γ := ∂Ω . For µ ≥ 0 we consider the Stokes
eigenvalue problem: Find (u, p, λ), with u = (u1, u2) ≠ 0 and λ ∈ R, such that

−µ∆u + ∇p = λu inΩ,
∇ · u = 0 inΩ,
u = 0 onΓ ,

(1)

which models the slow motion of an incompressible viscous fluid occupying Ω , where u is the fluid velocity and p is the
pressure.

We will denote by boldface the spaces consisting of vector value functions. Let V := H1
0(Ω) and S := L20(Ω) = {q ∈

L2(Ω) :


Ω
q = 0}. The norms and seminorms in Hm(D), with m an integer, are denoted by ∥ · ∥m,D and | · |m,D respectively

and (·, ·)D denotes the inner product in L2(D) or L2(D) for any subdomain D ⊂ Ω . The domain subscript is dropped for the
case D = Ω .

Problem (1) can be written, after normalization for u, in a variational form as follows:
Find (u, p, λ) ∈ (V, S, R), with ∥u∥0 = 1, such that

Q (u, p, v, q) = λ(u, v) ∀(v, q) ∈ (V, S), (2)

where

Q (u, p, v, q) = µ


Ω

∇u : ∇v −


Ω

p∇ · v −


Ω

q∇ · u,

with (·, ·) the inner product in L2(Ω).
Now, it is clear that the symmetric bilinear form Q is continuous, i.e., for every (u, q), (v, s) ∈ (V, S)

Q (u, q, v, s) ≤ C(∥u∥1 + ∥q∥0)(∥v∥1 + ∥s∥0),

moreover it is known [20,21] that Q (u, q, v, s) satisfies the following inf–sup condition with a positive constant β:

sup
(v,s)∈(V,S)

Q (u, q, v, s)
∥v∥1 + ∥s∥0

≥ β(∥u∥1 + ∥q∥0) ∀(u, q) ∈ (V, S), (3)

and so the bilinear form Q is stable.
Now, from the spectral theory (see [19]) we know that the eigenvalue problem (2) has a positive eigenvalue sequence λj

which we assume to be increasingly ordered:

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · lim
j→+∞

λj = +∞,

and the associated eigenfunctions

(u1, p1), (u2, p2), . . . , (uk, pk), . . .

with (ui,uj) = δij. For simplicity, we only consider simple eigenvalues in this paper.

3. Stabilized mixed finite element approximations

Let Th be a family of triangulations of Ω such that any two triangles in Th share at most a vertex or an edge. Let h stand
for the mesh-size; namely h = maxT∈Th hT , with hT being the diameter of the triangle T . We assume that the family of
triangulations {Th} satisfies a minimum angle condition, i.e., there exists a constant τ > 0 such that hT/rT ≤ τ , where rT is
the diameter of the largest circle contained in T .

Let

P1(Ω) = {u ∈ C(Ω)| u|T ∈ P1(T ) ∀ T ∈ Th}.

We consider the pair

Vh
= P1 ∩ H1

0(Ω) and Sh = P1 ∩ L20(Ω). (4)
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