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h i g h l i g h t s

• A new methodology is introduced for solving the governing equations of flow and transport.
• Global problem is divided into a set of local problems which are easy to solve.
• The global system of equations are assembled automatically in the solver routine.
• This technique uses the equations as suggested by the physics without extra manipulations.
• The result is simple, easy to run, update, and maintain algorithms.
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a b s t r a c t

In this work we apply the experimenting pressure field approach to the numerical solution
of the single phase flow problem in anisotropic porous media using themultipoint flux ap-
proximation. We apply this method to the problem of flow in saturated anisotropic porous
media. In anisotropic media the component flux representation requires, generally multi-
ple pressure values in neighboring cells (e.g., six pressure values of the neighboring cells
is required in two-dimensional rectangular meshes). This apparently results in the need
for a nine points stencil for the discretized pressure equation (27 points stencil in three-
dimensional rectangular mesh). The coefficients associated with the discretized pressure
equation are complex and require longer expressions which make their implementation
prone to errors. In the experimenting pressure field technique, the matrix of coefficients
is generated automatically within the solver. A set of predefined pressure fields is oper-
ated on the domain through which the velocity field is obtained. Apparently such velocity
fields do not satisfy the mass conservation equations entailed by the source/sink term and
boundary conditions fromwhich the residual is calculated. In this method the experiment-
ing pressure fields are designed such that the residual reduces to the coefficients of the
pressure equation matrix.
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1. Introduction

The continuum hypothesis provides the framework in which transport phenomena in porous media may be described
using a set of partial differential equations. In this framework, macroscopic variables are described as continuous functions
of space and time, Salama and VanGeel [1,2]. Such governing laws are usually solved numerically using different techniques.
This includes the finite differencesmethod, the finite elementsmethod, the boundary elementsmethod, etc. Several difficul-
ties usually encountermodeling of transport phenomena inporousmedia. Thismaybe related to thewide spectrumof length
scales associatedwith porousmedia applications (i.e., from small scale applications in confined spaces to large hydrogeolog-
ical scales). Furthermore, porous media characterization is usually prone to uncertainties of parameters and properties that
often require repeated simulation to optimize model prediction. In addition, phenomena occurring in porous media often
incorporate complex mechanisms associated with the quantification of the possible interactions mechanisms (e.g., chemi-
cal, rheological, etc.) between the flowing fluid and the solid particles. Moreover, several porous media applications involve
the transport of multi-phase systems with the associated complex interfacial phenomena. All these and more apparently
require robust and efficient algorithms that could accomplish reliable computations in reasonable time. A robust numerical
scheme is that which is simple in coding, faster in execution, can handle complex geometries, can work with anisotropic
and heterogeneous properties of themedium, follows the physics of the phenomena under investigation, etc. While the first
few aspectsmentioned above are in some sense pertinent to the numerical techniques themselves, the last one is verymuch
related to the algorithmmethodology. Unfortunately, none of the abovementioned numerical techniques shows superiority
in all aspects of interest to porous media applications. That is although finite differences are probably the simplest of all the
numerical schemes approximating partial differential equations; they confront several difficulties, particularly, when the
geometry of the simulation domain is complex. In this case it becomes exceedingly difficult for the mesh to conform to the
boundary of the domain. On the other hand, when the properties of medium show directional dependence (i.e., anisotropy),
traditional finite differences (i.e., the so called two-point flux approximation) cannot handle but diagonal tensor quantities.
Finite elements, on the other hand, have the advantages that it works well for complex geometries and could also consider
full tensor quantities. However, it is more involved and generally takes more time for coding and execution. The question
is, if none of the abovementioned numerical techniques can, alone, collect all the favorable requirements mentioned above,
is it possible to combine some of these methods and techniques so that a more reliable approach may be used? In other
words, is it possible to broaden the scope of finite differences method (which is the simplest of all numerical techniques) to
incorporate tensor quantities (for example) and if possible in what framework? To highlight this question it has been rec-
ognized that some finite element techniques can reduce, through some quadrature rules, to a finite difference scheme. As
an example, mixed finite elements have shown to reduce to cell-centered finite differences through some quadrature rules.
However, thiswas possible only for diagonal permeability tensors. For full permeability tensors, it has lately been recognized
that within the framework ofmulti-point flux, mixed finite elementmethod, and using certain quadrature rules, onemay be
able to find a finite difference representation of the governing equations which can handle full permeability tensor, Russell
and Wheeler [3], Wang and Mathew [4], Arbogast et al. [5], Wheeler and Yotov [6,7], Wheeler et al. [8,9], Osman et al. [10],
to list but a few. However, as will be discussed later, these expressions are quite long and would generally generate longer
algebraic formulas upon discretization. For example, each flux component at the edge of an interior cell would require six
pressure values in 2D rectangular mesh (or 18 pressure values in 3D rectangular meshes) from the surrounding cells and the
divergence of the velocity field at any interior cell would require, respectively, 9 and 27 pressure data from the surrounding
cells for the 2Dand3D rectangularmeshes. This apparentlywould lead to algorithmswhich are difficult tomaintain, develop,
update, etc. In otherwords, one needs to use such long stencils in order to construct globalmatrix to obtain the pressure field
over the domain of interest. This is apparently cumbersome andwould generally require that one tracks all the contributing
terms over each cell in order to construct the globalmatrix. If it is possible to handle each cell alone (i.e., locally) and automat-
ically constructing the global matrix based on the solution over each cell, the solution of such problem will be significantly
facilitated. Sun et al. [11], introduced a newmethodology tomodel transport phenomena in porousmediawhich follows the
logical sequence of the governing equations. In this technique, no tominimalmanipulation of the governing set of equations
to obtain reduced equations are required. In this technique, the matrix of coefficients which is required to obtain the pres-
sure field is constructed automatically within the solver routine. This allows one to discretize the governing equations as
suggested by the physics which results in simpler and shorter algebraic expressions. This techniquewill show its superiority
when applied to the multipoint flux approximation. That is while in isotropic porous media the matrix of coefficients which
is used to obtain the unknown pressure field is generally five-diagonal matrix (in 2D rectangular meshes), in multipoint flux
approximation of flow in anisotropic media, thematrix is generally nine-diagonal. Therefore constructing suchmatrix auto-
matically is a noticeable success as will be apparent later. In addition, in this work, the boundary conditions are considered
with the system of discretized equations. Although this methodology results in relatively larger system of equations, these
extra equations only constitute a small portion of the system of equations particularly when the mesh is dense.

2. The governing equations

Consider a given porousmediumdomain as shown in Fig. 1. The governing flowequations for this systemmaybe given as:

u = −K∇p in Ω ⊂ Rd, d = 2, 3 (1)
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