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a b s t r a c t

This paper describes a computational method for solving Fredholm integral equations of
the second kind with logarithmic kernels. The method is based on the discrete Galerkin
method with the shape functions of the moving least squares (MLS) approximation con-
structed on scattered points as basis. The MLS methodology is an effective technique for
the approximation of an unknown function that involves a locally weighted least square
polynomial fitting. The numerical scheme developed in the current paper utilizes the non-
uniform Gauss–Legendre quadrature rule for approximating logarithm-like singular inte-
grals and so reduces the solution of the logarithmic integral equation to the solution of a
linear system of algebraic equations. The proposed method is meshless, since it does not
require any backgroundmesh or domain elements. The error analysis of themethod is pro-
vided. The scheme is also applied to a boundary integral equation which is a reformulation
of a boundary value problem of Laplace’s equation with linear Robin boundary conditions.
Finally, numerical examples are included to show the validity and efficiency of the new
technique.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we investigate amethod for obtaining the numerical solution of the logarithmic Fredholm integral equation
of the second kind, namely

u(x)− λ

 b

a
K(x, y)u(y)dy = f (x), a ≤ x ≤ b, (1)

where the right hand side function f (t) and the logarithmic kernel function K(x, y) are given, u(x) is the unknown function
to be determined, λ is a constant. Assume that the kernel function K(x, y) takes the form

K(x, y) =

n
k=1

ak(x, y) ln |gk(x − y)| + bk(x, y), (2)
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where ak(x, y) and bk(x, y) are well-behaved functions (that is, they are several times continuously differentiable) and the
continuous functions gk(x−y) are such that the kernel function K(x, y) has the logarithm-like singularity along the diagonal
x = y but is continuous elsewhere.

An example of such equations is the reformulation of the exterior boundary value problem for the two-dimensional
Helmholtz equation which is characterized by [1]

u(x)+

 π

−π

K(x, y)u(y)dy = f (x), −π ≤ x ≤ π, (3)

where the kernel K(x, y) is logarithmic given by

K(x, y) = −
a(x, y)
π

ln
2 sin

x − y
2

+ b(x, y), (4)

with

a(x, y) = a0 + a1(x, y) sin2 x − y
2

, (5)

where a0 is a constant, a1(x, y) and b(x, y) are continuous functions of (x, y) and 2π periodic in each variable.
The few topics where a formulation of a problem by means of integral equations with logarithmic kernels has been used

are reported in [2,1] as follows:
1. Investigation of electrostatic, and low frequency electromagnetic problems [3].
2. Methods for computing the conformal mapping of a given domain [4].
3. Solution of electromagnetic scattering problems [5,6].
4. Determination of propagation of acoustical and elastical waves [7,8].

Fredholm integral equations with logarithmic kernels are usually difficult to solve analytically so, it is required to obtain
an efficient approximate solution. Theprojection anddiscrete projectionmethods [9–11] are the commonly used approaches
for the numerical solutions of these types of integral equations. The discrete Petrov–Galerkin methods [12], piecewise
polynomial collocation and Galerkin methods [13,14], Sinc-collocation methods [15], hybrid collocation methods [16],
high-order collocation methods [17], iterated fast multiscale Galerkin methods [18], Bubnov–Galerkin methods [19] and
Galerkin-wavelet methods [20–22] have been applied to solve weakly singular Fredholm integral equations of the second
kind, especially with logarithmic kernels. The Nystrom (quadrature) [23–25] and the product integration methods as the
development of Nystrommethods have been used to solve logarithmic Fredholm integral equations in [10,26,27]. Khuri and
Wazwaz [28] have investigated Adomian decomposition methods for solving logarithmic Fredholm integral equations. An
integral equation whose kernel presents logarithmic singularity has been numerically solved by the method of arbitrary
collocation points (ACP) [29].

In recent yearsmuch attention has been paid to themeshlessmethods not only by appliedmathematicians but also in the
engineering community. The meshless methods are based upon the scattered data approximations that estimate a function
without any mesh generation on the domain. These methods come in various favors, most of which can be explained either
by what is known in the literature as radial basis functions (RBFs) [30–33], or in terms of the moving least squares (MLS)
method [34]. The MLS consists of a local weighted least square fitting, valid on a small neighborhood of a point and only
based on the information provided by its N closet points. The main advantage of using the MLS approximation is that it sets
up and solves many small systems, instead of a single, but large, system [34,35].

The MLS technique [36,37] has significant importance applications in different problems of the numerical mathematics
such as partial differential equations (PDEs). Using this approach establishes some newmeshfree methods for solving PDEs,
for example, the element-free Galerkin (EFG) method [38], boundary node method (BNM) [39], hp-cloud method [40],
meshless local boundary integral equation (LBIE) method [41–43], Galerkin boundary node method (GBNM) [44,45],
meshless local Petrov–Galerkin (MLPG) method [46,47] and so on.

Here, we would like to review some of the most recent works which investigated the numerical solutions of integral
equations using the meshless methods. The meshless discrete collocation schemes based on the MLS approximations have
been used for the numerical solution of linear and nonlinear integral equations on non-rectangular domains in [48,49]
and integro-differential equations in [50] with sufficiently smooth kernels. Authors of [44,51] have proposed a MLS-based
meshless Galerkinmethod, the Galerkin boundary nodemethod (GBNM), for boundary integral equations and also provided
the error bound and the rate of convergence for this method. The radial basis functions (RBFs) [30,31,33] have been applied
for solving linear and nonlinear two-dimensional integral equations on non-rectangular domains with the error analysis
in [52,53]. Also we refer the interested reader to [36,37] for some recent investigation on MLS.

In this article, we employ the moving least square (MLS) approximation to solve the logarithmic Fredholm integral
equation of the second kind (1). The scheme utilizes shape functions of the MLS approximation constructed on distributed
nodal points on the interval [a, b] to approximate the unknown function u in the discrete Galerkin method. We also apply
the proposed approach to a boundary integral equation that arises from the boundary value problem for Laplace’s equation∆u(x) = 0, x ∈ D ⊂ R2,

∂u(x)
∂nx

+ p(x)u(x) = g(x), x ∈ ∂D,
(6)
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