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a b s t r a c t

We present an iterative proposal, based on the preconditioned conjugate gradient method,
to solve the linear system associated to the problem of approximating a data set by a
minimal energy surface constructed through a Powell–Sabin finite element over a∆1-type
triangulation defined on a polygonal domain. These approximation problems give rise to
symmetric, banded, and positive definite matrices with a very special block structure that
depends on the basis functions of the associated vector space, and also on the numeration of
the nodes in the triangulation. In practice, the associated sparse matrices are large and ill-
conditioned. The special structure of these matrices allows us to adapt and explore several
known preconditioned strategies to improve the performance of the conjugate gradient
method.

We adapt and explore five different preconditioning strategies, including some well-
known direct and also some recent inverse strategies. Special attention is paid to the
delicate and difficult task of choosing the related parameters in each case. The quality
of each preconditioner is evaluated by observing the clustering of the preconditioned
matrix eigenvalues, and the obtained reduction in number of iterations. We report on
seven different surfaces, and our results indicate that the best preconditioning strategies
for this application are the ones based on incomplete factorizations. Nevertheless, from a
computational-cost point of view, all the explored strategies are competitive.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this work we present and evaluate an iterative proposal, which overcomes the limitations of the direct methods
currently used, to solve the linear system associated to the problem of approximating a data set by aminimal energy surface
constructed through a Powell–Sabin finite element of classC1. Recent applications that make use of approximating surfaces
in the presence of noisy data, or in the presence of data sets in which there are regions with absence of information (see
e.g. [1–5]) underline the interest on this topic. Nevertheless, to our knowledge none of the papers in the existing literature
regarding this field considers the highly important problem of how to solve the associated linear systems, which are large,
very ill-conditioned, and possess a special block structure. The results presented in this paper, for a Powell–Sabin finite
element of class C1, can be extended to other schemes to deal also with a large set of data points to be approximated by
means of a surface and/or with higher dimensional spline spaces. These two aspects are of great interest in the field of
engineering.
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The matrix associated to the linear system, which is obtained when the related variational problem is discretized, has
a very special block structure which depends on the basis functions chosen in the considered vector space, and on the
numeration of the knots of the ∆1-triangulation of the domain. Such matrix, called stiffness matrix, is always symmetric,
banded, positive definite, and sparse, i.e., it has a very low percentage (<1%) of nonzero entries. For high-dimensional vector
spaces, the associated matrices are large and ill-conditioned. Therefore, in practice the use of iterative methods, such as
the preconditioned conjugate gradient method, is highly recommendable. Usually, the choice of a suitable preconditioner
for the conjugate gradient method is problem-dependent. For this special application, we adapt and explore five different
preconditioning strategies, including some well-known direct and also some recent inverse strategies [6–9]. For every
strategy a set of parameters must be chosenwhich have an important influence on the performance of the iterativemethod.
We discuss the delicate and difficult task of choosing these parameters in each case. The quality of each preconditioner
is evaluated by observing the clustering of the preconditioned matrix eigenvalues, and also by the obtained reduction in
number of iterations. We present an extensive numerical report for the approximation of seven surfaces with different
characteristics.

The rest of this paper is divided into sections as follows. In Section 2, we introduce the required notation, review
the theoretical and practical aspects of the Powell–Sabin finite elements, and review their connection with the minimal
energy approximating surface problem. In particular, in Section 2.1, we fully describe the sparse structure of the large-
scale symmetric and positive definite stiffness matrix that appears when using Powell–Sabin finite elements of class C1.
In Section 3, we briefly describe the preconditioned conjugate gradient method and its properties. We also present five
different preconditioning strategies, and discuss their specialized adaptation to the linear systems described in Section 2. In
Section 4, we present an extensive numerical report for the approximation of seven surfaces with different characteristics,
using the specialized preconditioning strategies discussed in Section 3. Finally, in Section 5, we present some concluding
remarks.

2. Powell–Sabin finite elements and minimal energy approximating surfaces

In general, a finite element [10–12] is a triplet
K, E, P


,

where K is a geometric element in Rn, E is a set ofm data, usually related to the values of a given function and its derivatives
at some points of K, and P is a vector space of dimension m, formed by polynomial functions defined over K in such a way
that the following property holds: for each fixed set of values of the data in E, there exists a unique element in P taking such
values.

The main idea of the finite element method is to divide a polygonal domain D on which a problem (solving a partial
differential equation or approximating a data set, among others) is stated into several elements {Ki} in K, and then consider
a functional vector space of functions over D formed by splines which are polynomials in P when restricted to each of the
elements Ki. In particular, weworkwith polynomial splines overwhichwe have the control of each data inE at each element
Ki. In this work, we will consider triangular planar finite elements, i.e., we will consider K as the set of triangles, and n = 2.
More precisely, we will work with the Powell–Sabin finite element of class C1, which is now described.

Introduction to the Powell–Sabin finite element of class C1. The Powell–Sabin finite element was initially developed to
overcome the difficulties arisingwhen dealingwith contour plots of bivariate functions. TheC1 Powell–Sabin finite element,
introduced by M.J.D. Powell and M.A. Sabin in 1977 [13], has the advantage that the contour lines of the first partial
derivatives of the functions are polygonal curves. In [13] the authors introduced also the more general Ck Powell–Sabin
finite element. In order to describe the C1 Powell–Sabin finite element, we first need to introduce some basic concepts and
notations: In the sequel, D ⊂ R2 will denote a polygonal domain (open, polygonal, non-empty, bounded and connected set)
such that D admits a ∆1-type triangulation, i.e., a triangulation induced by integer translates of x = 0, y = 0 and x+ y = 0
(see e.g. [14]). The following figure shows an example of a ∆1-triangulation of a square domain.

The Powell–Sabin sub-triangulation T PS associated to a triangulation T (see [15] or [13]) is obtained by joining the
center OT of the inscribed circle of each interior T ∈ T to the vertices of T and to the centers OT ′ of the inscribed circles of
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