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a b s t r a c t

In this paper, the two-dimensional inverse Stokes problems, governed by bi-harmonic
equations, are stably solved by the modified collocation Trefftz method (MCTM). In some
practical applications of the Stokes problems, part of the boundary conditions cannot be
measured in advance, so the mathematical descriptions of such problems are known as
the inverse Stokes problems. When numerical simulation is adopted for solutions of the
inverse Stokes problems, the solutions will become extremely unstable, which means
that small perturbations in the boundary conditions will result in large errors of the final
results. Hence, we adopted the MCTM for stably and efficiently analyzing the inverse
Stokes problems. The MCTM is one kind of boundary-type meshless methods, so the mesh
generation and the numerical quadrature can be avoided. Besides, the numerical solution
is expressed as a linear combination of T-complete functions modified by a characteristic
length. By enforcing the satisfactions of the boundary conditions at every boundary node,
a system of linear algebraic equations will be yielded. The unknown coefficients in the
solution expression can be acquired by directly inverting the coefficient matrix. The
numerical solutions and their derivatives canbe easily obtainedby linear summation. Three
numerical examples are provided to demonstrate the accuracy and the stability of the
proposed meshless scheme for solving the two-dimensional inverse Stokes problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The flow field of viscous incompressible fluid is governed by thewell-knownNavier–Stokes equations.When the inertial
force of flow field is negligible, the two-dimensional Navier–Stokes equations will be reduced to the Stokes equations,
which are used to describe the fluid motion for extremely viscous fluid or fluid with very slow velocity. In Stokes problem,
the flow field is dominated by the pressure gradient force and the viscous force. In order to understand the underlying
physics of Stokes flow, it is necessary to accurately analyze the Stokes equations. In comparing with mathematical analysis
and experimental study, numerical simulation seems the better choice when realistic applications in irregular domains
are considered. So, in this paper, the Stokes equations are converted to a bi-harmonic equation by utilizing the definition
of streamfunction and a boundary-type meshless method, the modified collocation Trefftz method (MCTM), is used to
accurately and efficiently analyze the two-dimensional inverse Stokes problems.

Whennumerical simulations are used for solutions of the Stokes equations, there are somedifferent formulations that can
be adopted, such as the primary-variables formulation [1,2], the velocity–vorticity formulation [3], and the streamfunction
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formulation [4]. The unknown variables in the primary-variables formulation are velocity components and pressure. Since
only the gradient terms of pressure appear in the momentum equations of the primary-variables formulation, it greatly
increases the difficulty for numerical simulation. On the other hand, by introducing the vorticity vector, which is defined
by taking curl to velocity vector, the velocity–vorticity formulation can be derived. Although the difficulty of calculations
of pressure can be overcome, the number of unknowns is increased for three-dimensional problems, which will cost more
computer power. In streamfunction formulation, the Stokes equations can be recast as one biharmonic equation for two-
dimensional problem. The number of unknowns in streamfunction formulation is the minimum in comparing with other
formulations, so it is very cheap and simple in the viewpoint of numerical simulation. Thus, the two-dimensional inverse
Stokes problems governed by a bi-harmonic equation are considered in this study.

Recently, many studies are focused on developing numerical schemes for solving the direct and inverse Stokes problems.
For example, Li and Li [5] proposed the penalty finite element method for Stokes problems with nonlinear slip boundary
conditions, while Ye [6] adopted the least-squares finite element methods and domain decomposition technique to analyze
the Stokes problems. For some realistic applications and engineering problems, parts of the boundary conditions cannot be
directly measured and determined before numerical simulation. This kind of problems is known as the inverse problems,
which are highly ill-conditioned and very unstable. Hence, it is very important to develop a stable and efficient numerical
algorithm for solving inverse problems, especially for Stokes equations. Chen et al. [7] used the method of fundamental
solutions (MFS) to obtain the numerical solutions of inverse Stokes problems, as Zeb et al. [8,9] adopted the boundary
element method to analyze two-dimensional inverse Stokes problems. In this paper, we used a highly accurate meshless
scheme for stably solving the two-dimensional inverse Stokes problems.

In order to avoid time-consuming mesh generation and numerical quadrature, many so-called meshless methods are
proposed in the past decades, such as the meshless local Petrov–Galerkin method [10], the radial basis function collocation
method [11–13], the local radial basis function collocation method [14], the element-free Galerkin method [15], the
MFS [16–19], the MCTM [20–23], smoothed particle hydrodynamics [24], generalized finite difference method [25,26].
Among them, theMFS and theMCTM are two of the most promising boundary-typemeshless methods. In MFS, the solution
is expressed as a linear combination of fundamental solutions, which are located out of the computational domain. Although
the numerical results by MFS is extremely accurate, the determination of the fictitious boundary for fundamental solutions
is still a challenging problem and needed further investigations. On the other hand, the numerical solution in the MCTM is
expressed as a linear combination of T -complete functions, which will be modified by a characteristic length. In previous
studies, condition numbers of the coefficient matrices in the MCTM are greatly reduced by introducing the characteristic
length [20–23,27]. In addition, the numerical solution by the MCTM is extremely accurate and stable even for the Cauchy
problems [27], one kind of inverse problems. Since only boundary nodes are needed, the MCTM is very simple and will cost
very little computational power. Therefore, we adopt the highly accurate MCTM to stably and efficiently analyze the inverse
Stokes problem which is formulated by a bi-harmonic equation.

In this paper, a boundary-type meshless scheme is proposed to stably analyze the two-dimensional inverse Stokes
problems. The primary-variables formulation of the Stokes equations will be reformulated to a bi-harmonic equation by
introducing the vorticity and the streamfunction. Then, the highly accurate MCTM will be adopted to resolve this equation.
The numerical solution of streamfunction is expressed as a linear combination of T -complete functions and the unknown
coefficients will be obtained by enforcing the satisfactions of the boundary conditions at every boundary node. The stability
of the proposedmeshless scheme is validated by adding noise to the given boundary conditions. In Section 1, themotivation
and the introduction of this study will be given. Then, the Stokes equations and the proposed numerical scheme will be
described. Three numerical examples are provided to validate the stability and the efficacy of the proposedmeshlessmethod.
Based on the numerical results and comparisons, some conclusions and discussions will be drawn.

2. Governing equations

When the inertial force is negligible in comparison with the viscous force and the pressure gradient force, the governing
equations for fluid flow are the well-known two-dimensional Stokes equations, which are shown as follows:

∂u
∂x

+
∂v

∂y
= 0, (x, y) ∈ Ω, (1)

−
∂p
∂x

+ ∇
2u = 0, (x, y) ∈ Ω, (2)
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∂p
∂y
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2v = 0, (x, y) ∈ Ω, (3)

where u and v are the x-directional and the y-directional velocity components, respectively. p is the pressure and ∇
2 is the

Laplacian operator. Ω and ∂Ω = Γ ∪ γ denote the computational domain and the whole boundary. The above system
of equations can be solved with suitable boundary conditions for a well-posed problem. In the above system of partial
differential equations, the velocity components and the pressure are coupled with each other, so it is not easy to analyze
this system directly. In this paper, we would convert the Stokes equations to a bi-harmonic equation by introducing the
streamfunction.
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