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a b s t r a c t

We propose a procedure for building symmetric positive definite band preconditioners for
large-scale symmetric, possibly indefinite, linear systems, when the coefficient matrix is
not explicitly available, but matrix–vector products involving it can be computed. We fo-
cus on linear systems arising in Newton-type iterations withinmatrix-free versions of pro-
jected methods for bound-constrained nonlinear optimization. In this case, the structure
and the size of the matrix may significantly change in subsequent iterations, and precon-
ditioner updating algorithms that exploit information from previous steps cannot be easily
applied. Our procedure is based on a recursive approach that incrementally improves the
quality of the preconditioner, while requiring amodest number of matrix–vector products.
A strategy for dynamically choosing the bandwidth of the preconditioners is also presented.
Numerical results are provided, showing the performance of our preconditioning technique
within a trust-region Newton method for bound-constrained optimization.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We are interested in the solution of linear systems

Hd = −g (1)

that arise in Newton-type iterations within projected methods for large-scale optimization problems of the form

minimize f (x),
s.t. l ≤ x ≤ u,

where f ∈ C2([l, u]), l ∈ {R ∪ {−∞}}
n, u ∈ {R ∪ {+∞}}

n. In these methods H is usually (a symmetric approximation to)
the reduced Hessian of f , and g is the reduced gradient with respect to the free variables at the current step (see, e.g., [1–6]).

We assume that the matrix H is sparse, is not available in a fully assembled form and/or is too large to fit into the main
memory, but a procedure for computing matrix–vector products Hv is available. In this context, computing inexact Newton
steps through variants of the Conjugate Gradient (CG) method able to deal with negative curvature directions [7–9] is a
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natural choice for the solution of system (1), since CG only uses the matrix through matrix–vector products. On the other
hand, the convergence of CG depends on the spectral properties of the matrix, and preconditioning is usually needed to
achieve reliable solutions in a reasonable time.

Preconditioning in a matrix-free approach can be performed without explicitly assembling the preconditioner, i.e., in a
fully matrix-free regime, or by explicitly building a preconditioner that uses a modest amount of memory, possibly O(m),
where m is the dimension of H . In both cases, p ≪ m matrix–vector products should be performed to obtain the pre-
conditioner, to avoid that the improvement of the convergence speed is hidded by the cost of the preconditioner. When
considering projected methods, it must be also taken into account that the working set, and hence the corresponding free
variables,may significantly change from an iteration to the next one, hence reusing information fromprevious stepsmay not
be easy.

A fully matrix-free approach for preconditioning sequences of linear systems is based on quasi-Newton updating tech-
niques. The basic idea is to build an approximation to theHessian or its inverse at the current outer iteration through suitable
BFGS updates. For example, at iteration k, the (inverse) Hessian approximation Hk to be used as preconditioner can be ob-
tained by BFGS updates of some initial approximation H , by using pairs of correction vectors built from previous Newton
iterates. Alternatively, the preconditioner for iteration k can be obtained by applying BFGS updates based on correction vec-
tors obtained as byproduct of the CGmethod applied to the Newton system at iteration k−1 [10]. Different BFGS approaches
can be combined, as in the TN software [11]. The updated matrices are not computed explicitly, but only the vectors needed
to perform the updates are stored; a limited-memory approach is generally used, where only p pairs of correction vectors,
with p ≪ m, are considered. The resulting preconditioners are low cost, but are usually effective on sequences of slowly
varying systems. Furthermore, in a projected framework, where the set of free variables changes until the active constraints
at the solution have been identified, Hessian submatrices corresponding to different variables are considered at different
iterations, thus the BFGS updates performed at a certain iteration may not be fully exploited at subsequent iterations.

A different approach, aimed at explicitly building preconditioners, employs sparse matrix computation techniques. Such
techniques, which require the knowledge of the matrix sparsity pattern, date back to [12], and since then they have
been largely used to compute sparse Hessians (and Jacobians) when only matrix–vector products with these matrices,
or approximations to the matrix–vector products via finite differences or automatic differentiation, are available (see the
survey paper [13]). Generally speaking, the problem of efficiently computing the nonzero entries of a matrix H , with known
sparsity pattern S(H), can be formulated as follows: given S(H), find a set of binary vectors {v1, v2, . . . , vp}, of minimum
cardinality, such that the nonzero entries of H can be determined from the products Hv1,Hv2, . . . ,Hvp. This problem is
equivalent to finding a so-called structurally orthogonal partition of the columns of H that has the minimum number of
column groups; if H is symmetric, as in the case we are interested in, symmetrically structurally orthogonal partitions can
be used to reduce the number of matrix–vector products. As first recognized in [14], these problems can be formulated
as graph coloring problems; their solution is NP-hard, but several algorithms are available to obtain practically effective
colorings.

Theprevious concepts and techniques canbe slightlymodified for preconditioningpurposes, to build an approximation to
H made of a subset of the nonzero entries of thematrix, i.e., to perform a partial matrix computation. A further approximation
can be obtained by choosing a simple sparsity pattern, e.g., through some sparsification of H , and then applying graph
coloring algorithms to this pattern with matrix–vector products involving the whole matrix H [15]. The result is a so-called
partial matrix estimation, i.e., an approximation to the matrix entries belonging to the selected pattern. Of course, the closer
the sparsity pattern to the original one, the better the preconditioner is expected to be; on the other hand, more complete
patterns usually correspond to higher computational costs for the computation and application of the preconditioner. We
note that the computed preconditioner is usually applied through a factorization of it, therefore the choice of the sparsity
pattern should take into account the cost for such factorization. We also observe that the preconditioner obtained through
partial matrix computation or approximation may not preserve some property of the matrix H , e.g., positive definiteness,
and a correction procedure must be applied if we wish to recover it. Finally, we note that the strategies proposed in [16]
and [17, Approach (A3)] to build diagonal and band preconditioners, respectively, can be regarded as special cases of partial
matrix estimation plus suitable corrections to obtain positive-definite matrices.

Recently, a preconditioner based on a limited-memory partial Cholesky factorization has been proposed in the context of
matrix-free interior point methods for linear and quadratic programming [18] and extended to least squares problems [19].
The preconditioner is obtained by applying the Cholesky factorization to the k columns of the matrix H corresponding to
the p largest pivots, with p ≪ m, and using a suitable diagonal approximation to the remaining part of the matrix. If H is
sparse, these columns can be computed with few matrix–vector products. However, we note that this approach requires
the knowledge of the complete diagonal of H , thus limiting the application of the preconditioner.

We note that, when a sequence of linear systemsmust be solved, the explicit construction of a preconditioner in amatrix-
free regime in principle allows for the application of preconditioner updating techniques such as those presented in [20–25],
provided that information on the difference between the matrices of the sequence is available or can be estimated at a rea-
sonable cost. This approach has been recently used in [26], where an approximation to the difference matrix needed by the
updating algorithm is either explicitly computed by partialmatrix estimation, or, in the case of separable functions providing
thematrix–vector products, is implicitly obtained by exploiting separability. However, in projectedmethods, the part of the
Hessian considered at each iteration may significantly change, thus making the previous techniques not easily applicable,
and recomputing a cheap preconditioner for each system may result more efficient.
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