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a b s t r a c t

A recently derived numerical algorithm for one-dimensional one-phase Stefan problems
is extended for the purpose of two-phase moving boundary problems in which the second
phase first appears only after a finite delay time; this can occur if the phase change is caused
by a heat-flux boundary condition. In tandemwith the Keller box finite-difference scheme,
the so-called boundary immobilization method is used. An important component of the
work is the use of variable transformations that must be built into the numerical algorithm
to resolve the boundary-condition discontinuity that is associated with the onset of phase
change. This allows the delay time until solidification begins to be determined, and gives
second-order accuracy in both time and space.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Phase-change, or Stefan, problems in which amaterial melts or solidifies occur in a wide variety of natural and industrial
processes. Mathematically, these are special cases ofmoving-boundary problems, inwhich the location of the front between
the solid and liquid is not knownbeforehand, butmust be determined as part of the solution. Althoughmost activity has been
devoted to the classical one-dimensional Stefan problem in which phase change occurs due to a constant heating or cooling
temperature, of more practical relevance is the situation where a heat flux or convective boundary condition is imposed. In
general, there are no analytical solutions available for these cases and thus numerical methods are necessary. Furthermore,
of all the numerical methods that have been applied to the classical problem, only the heat balance integral method has
been extended to the non-classical Stefan problem [1–6]. Whilst this method is popular, an unsatisfactory feature is the
use of assumptions on the form of the solution that may not be generally valid; furthermore, the solution obtained is of
indeterminate order of accuracy. Amongst the other available numerical methods, the boundary immobilization method,
implemented in tandemwith the Keller Box scheme, has recently emerged as the most accurate alternative for the classical
problem [7], and the purpose of this paper is to demonstrate the use of this method for the non-classical problem.

There are, however, several obstacles which make the extension non-trivial. Unlike the problems analysed in [7], which
considered a material that was initially at its melting temperature, phase change will not commence instantaneously if the
material is not at this temperature, and a central part of the problem is to determine when this actually occurs. Thereafter,
it is necessary to determine the location of the moving phase-change boundary and, as in [7], to consider how numerically
to handle the new phase, given that its thickness is initially zero. An initial analysis of the problem was undertaken in [8],
and a principal finding was that the phase-change front starts to grow as (t − tm)3/2, where tm is the time taken for phase
change to begin; although similar to that for ablation problems [9], the initial evolution of the front is different to that for
the classical Stefan problem, which has behaviour (t − tm)1/2, with tm = 0. However, the analysis in [8] was incomplete in
several respects:
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Fig. 1. System geometry.

1. the numerical scheme was not able to compute when phase change began;
2. no numerical scheme was given for the entire problem, only for the phase-change stage, and even this was only possible

because an analytical expression was available for the initial condition for this stage;
3. the formal accuracy of the numerical scheme was not verified.

The layout of the paper is as follows. In Section 2, we formulate a problem for the solidification, due to a cooling heat
flux, of material that is initially above its melting temperature; in Section 3, we nondimensionalize themodel equations and
transform them to a form more suitable for numerical integration. In Section 4, we explain how the Keller box scheme, in
tandemwith the boundary immobilizationmethod, is applied to this particular problem. The results are then presented and
discussed in Section 5, and conclusions are drawn in Section 6.

2. Mathematical formulation

Consider the cooling of a liquid, occupying the half-plane y > 0, that is initially at a temperature, Thot , which is greater
than its melting temperature, Tmelt , and which is cooled at y = 0 for time t > 0 by an applied heat flux Q (t). After cooling
commences, the temperature of the liquid decreases until some time tm, at which stage solid begins to form at y = 0;
subsequently, solid occupies the region 0 ≤ y ≤ ym(t) and liquid occupies y > ym(t), where ym (t) denotes the location of
the solidification front. A schematic is shown in Fig. 1.

Assuming the material properties of the solid and liquid phases to be constant, the governing equations are as follows.
For 0 < t < tm and y > 0, and then t > tm and y > ym(t), we have

ρlcpl
∂Tl
∂t

= kl
∂2Tl
∂y2

, (1)

where Tl is the liquid temperature, kl is the thermal conductivity of the liquid, cpl is its specific heat capacity andρl its density.
For t > tm and 0 < y < ym(t), we have

ρscps
∂Ts
∂t

= ks
∂2Ts
∂y2

, (2)

where Ts is the solid temperature, ks is the thermal conductivity of the solid, cps is its specific heat capacity and ρs its density.
We assume henceforth that ρl = ρs = ρ.

For boundary conditions, we have, at y = ym(t),

Ts = Tl = Tmelt , (3)

and the Stefan condition,

ks
∂Ts
∂y

− kl
∂Tl
∂y

= ρ∆Hf
dym
dt

, (4)
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