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a b s t r a c t

A partition of unity method for the displacement obstacle problem of clamped Kirchhoff
plates is considered in this paper.We derive optimal error estimates and present numerical
results that illustrate the performance of the method.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let Ω be a bounded polygonal domain Ω ⊂ R2, f ∈ L2(Ω), g ∈ H4(Ω), and ψ1, ψ2 ∈ C2(Ω) ∩ C(Ω̄) be two obstacle
functions such that

ψ1 < ψ2 inΩ and ψ1 < g < ψ2 on ∂Ω. (1.1)

Consider the following problem: find u ∈ H2(Ω) such that

u = argmin
v∈K

G(v), (1.2)

where

K = {v ∈ H2(Ω) : v − g ∈ H2
0 (Ω), ψ1 ≤ v ≤ ψ2 onΩ}, (1.3)

G(v) =
1
2
a(v, v)− (f , v), (1.4)

a(v,w) =


Ω

∇
2v : ∇

2w dx, (f , v) =


Ω

f v dx (1.5)

and ∇
2v : ∇

2w =
2

i,j=1 vxixjwxixj is the (Frobenius) inner product of the Hessian matrices of v andw.
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Since K is a nonempty closed convex subset of H2(Ω) and a(·, ·) is symmetric and coercive on H2
0 (Ω) which contains

the set K − K = {v − w : v,w ∈ K}, it follows from the standard theory [1–4] that (1.2) has a unique solution u ∈ K
characterized by the following variational inequality:

a(u, v − u) ≥ (f , v − u) ∀v ∈ K . (1.6)

The convergence of finite element methods for second order obstacle problems was investigated in [5–7], shortly after it
was shown in [8] that the solutions for such obstacle problems belong to H2(Ω) under appropriate regularity assumptions
on the data. This full elliptic regularity allows the complementarity form of the variational inequality (in the strong sense)
to be used in the convergence analysis.

In contrast, the solutions of fourth order obstacle problems do not belong to H4
loc(Ω) even if all the data are smooth [9].

It was shown in [10,11,9] that the solution u of (1.2)/(1.6) belongs to H3
loc(Ω) ∩ C2(Ω) under the assumptions above on f ,

g , ψ1 and ψ2. Since the obstacles are separated from each other and from the displacement boundary condition (cf. (1.1)),
we have∆2u = f near ∂Ω . Therefore it follows from the elliptic regularity theory for the biharmonic operator on polygonal
domains [12–15] that u ∈ H2+α(N ) for some α ∈ ( 12 , 2] in an open neighborhood N of ∂Ω . The elliptic regularity index α
is determined by the interior angles ofΩ and we can take α to be 1 for convexΩ . Thus the solution u of (1.2)/(1.6) belongs
to H2+α(Ω) ∩ H3

loc(Ω) ∩ C2(Ω) in general.
This lack of H4

loc(Ω) regularity means that the complementarity form of (1.6) only exists in a weak sense, and the
convergence analysis based on the second order approach would only lead to suboptimal error estimates.

A new convergence analysis for finite element methods for (1.2)/(1.6) that does not rely on the complementarity form
of the variational inequality (1.6) was proposed in [16], where optimal convergence was established for C1 finite element
methods, classical nonconforming finite element methods, and C0 interior penalty methods for clamped plates (g = 0)
on convex domains. The results in [16] were subsequently extended to general polygonal domains and general Dirichlet
boundary conditions for a quadratic C0 interior penalty method [17] and a Morley finite element method [18]. The goal of
this paper is to extend the results in [17,18] to a partition of unity method (PUM) for plates [19,20].

The rest of the paper is organized as follows. We introduce the partition of unity method in Section 2 and carry out the
convergence analysis in Section 3. Numerical results are reported in Section 4, followed by some concluding remarks in
Section 5.

2. A partition of unity method

We begin with the construction of the approximation space Vh in Section 2.1 and define an interpolation operator from
H2(Ω) into Vh in Section 2.2. The discrete obstacle problem is given in Section 2.3.We refer the readers to [21,22] for various
aspects of generalized finite element methods.

2.1. Construction of the approximation space

The approximation space is based on partition of unity by flat-top functions [23–25].

2.1.1. Partition of unity
Let φ be the C1 piecewise polynomial function given by

φ(x) =

φ
L(x) := (1 + x)2(1 − 2x) if x ∈ [−1, 0]
φR(x) := (1 − x)2(1 + 2x) if x ∈ [0, 1]
0 if |x| ≥ 1,

which enjoys the partition of unity property that

φL(x − 1)+ φR(x) = 1 for 0 ≤ x ≤ 1. (2.1)

We define a flat-top function ψδ by

ψδ(x) =


φL


x − (−1 + δ)

2δ


if x ∈ [−1 − δ,−1 + δ]

1 if x ∈ [−1 + δ, 1 − δ]

φR

x − (1 − δ)

2δ


if x ∈ [1 − δ, 1 + δ]

0 if x ∉ [−1 − δ, 1 + δ].

Here δ is a small number that controls the width of the flat-top part of this function where ψδ = 1.
For ease of presentation we take Ω to be a rectangle (a, b) × (c, d). But the construction and analysis can be extended

to other domains (cf. Remark 2.4 and Examples 4.4 and 4.5 in Section 4).
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