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a b s t r a c t

We provide in this paper an analysis on the superconvergence patch recovery (SPR)
techniques for the linear finite element approximation based on adaptively refined
anisotropic meshes in two dimensions. These techniques include the gradient recovery
based on local weighted averaging, the recovery based on local L2-projection, and the
recovery based on least square fitting. The last one leads to the Zienkiewicz–Zhu type error
estimators popular in engineering communities. Based on the superconvergence result for
anisotropic meshes established recently in Cao (2013), we prove that all three types of SPR
techniques produce super-linearly convergent gradients if the meshes are quasi-uniform
under a givenmetric and eachpair of adjacent elements in themeshes forman approximate
parallelogram. As a consequence, the error estimators based on the recovered gradient are
asymptotically exact. These results provide a theoretical justification for the extraordinary
robustness and accuracy observed in numerous applications for the recovery type error
estimators on anisotropic meshes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For problems with local anisotropic features, such as boundary and internal layers, finite element (FE) approximation
based on adaptive anisotropic meshes can be much more efficient than the one based on shape regular meshes. Over the
last decade, there has been a growing interest in the analysis and application on the finite element method (FEM) based on
anisotropic meshes, see, e.g., [1–13]. An important component of the adaptive FE solution process is the a-posteriori error
estimation, which is used to assess the accuracy of the numerical solutions and to guide the adaptive mesh refinements.
There aremainly two types of a-posteriori error estimate techniques, residual based estimates and recovery based estimates.
Both types of techniques arewell established for the FE approximation on shape regularmeshes, see, e.g., themonographs by
Ainsworth andOden [14], Babüska and Strouboulis [15],Wahlbin [16], and Zhu [17]. For the FE approximation on anisotropic
meshes, there have been much research on the residual based error estimate techniques in recent years. For instance,
Kunert and Nicaise [10,11] proved both upper and lower bounds for various residual based error estimators for two and
three dimensional problems. Formaggia [18] studied the residual based error estimators for advection–diffusion–reaction
problems and Stokes problems. Creusé and Nicaise [4], and Houston [9] provided an analysis on the residual based error
estimators for the discontinuous Galerkin method on anisotropic meshes.
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On the other hand, there have also been many reports on the numerical study of the recovery type error estimates
on anisotropic meshes, including the prominent Zienkiewicz–Zhu (ZZ) type [19,20] error estimators in particular [3,5,13,
21–25]. Numerous examples and applications demonstrate that recovery type error estimators behave extraordinary well
even at the presence of highly anisotropic elements. They are not only reliable and efficient, but also often asymptotically
exact. These features make recovery type estimators a favorable choice for FE practitioners in engineering communities.
However, there has been very few theoretical work justifying these good behaviors in the case of anisotropic adaptive
meshes. It is well-known that for the FEM based on shape regular meshes, superconvergence of the finite element solution
plays an indispensable role in the analysis on the recovery type error estimators. This theory is still under development
for anisotropic meshes. There have been a few superconvergence studies on the FE approximation on anisotropic meshes.
But they mostly deal with uniformmeshes or structuredmeshes [26–29]. Superconvergence for linear FE approximation on
general adaptively refined anisotropic meshes has not been established until very recently in [30].

In [30] we considered the finite element approximation based on a class of meshes that are quasi-uniform under a given
metric. By extending the concept of approximate parallelogram introduced in [31,32] for shape regularmeshes to anisotropic
meshes, we established the super-linear convergence of the finite element solution to the interpolation of the exact solution
in H1-norm. We also obtained the super-linear convergence for a gradient recovery based on the global L2-projection of
gradient of the finite element solution. It implies that the error estimator based on the global L2-projection recovery is
asymptotically exact for the adaptive anisotropic meshes.

The purpose of this paper is to provide an analysis on the superconvergence patch recovery (SPR) techniques, which are
based on local instead of global operations, for the linear FEM on anisotropic meshes in two dimensions. More precisely, we
study three types of gradient recovery in the SPR family. They include the recovery based on local weighted averaging, the
recovery based on local L2-projection, and the recovery based on least square fitting. The third one leads to the well-known
ZZ-type error estimators. Based on the superconvergence result established in [30] and following similar ideas as in [33,34],
we prove that all three types of SPR recovery techniques produce super-linearly convergent gradient if the meshes are
quasi-uniform under a given metric and each pair of adjacent elements in the meshes form an approximate parallelogram.
As a consequence, the error estimators based on the SPR gradient recovery are asymptotically exact. These results provide a
theoretical justification for the extraordinary robustness and accuracy observed in numerous applications for the recovery
type error estimators on anisotropic meshes.

A sketch of the paper is as follows: In Section 2 we first describe the FE approximation based on a class of anisotropic
meshes that are quasi-uniform under a metric. Then we summarize the superconvergence of the FE solution established
in [30]. In particular, we recall the concept of approximate parallelograms introduced there, which is also essential for
our analysis of the SPR techniques. In Section 3 we develop the analysis on the recovery techniques based on local
weighted averaging, local L2-projection, and least square fitting, separately. We present in Section 4 a numerical example
to demonstrate the superconvergence of the recovery techniques and the asymptotic exactness of the error estimators. And
we conclude the paper with some comments in Section 5.

Throughout this paper, we use c to represent a general positive constant independent of the mesh and the functions
involved, and use ‘‘≃’’ to represent the quantities on each side of it are equivalent with equivalence constants independent
of the mesh and functions involved. For vectors we typically use | · | for their Euclidean norms, and for matrices we use ∥ · ∥

for their 2 -norms. For functions defined on domain D, we use ∥ · ∥D and ∥ · ∥1,D to represent, respectively, their L2-norm and
H1-norm over D. When D is the entire domain for the PDE, we may omit the subscript D in the norms.

2. Model PDE and its FE approximation based on anisotropic meshes

We consider the following homogeneous Dirichlet problem of a second order elliptic equation:
−∇ · (A∇u + bu) + du = f , in Ω

u|∂Ω = 0, (1)

where A is a positive definite constant matrix, b, d, and f are suitably smooth functions. Eq. (1) is assumed to be strongly
elliptic.

FE approximation: Note that for discretization involving anisotropic meshes, the element diameter is no longer a proper
parameter for describing the asymptotic behaviors, since each element can have much different length scales in different
directions. Instead, the total number N of elements should be used to characterize the fineness of the discretization. Thus
we use {TN} to represent a family of triangulations ofΩ satisfying the basic requirement that the intersection of the closures
of any two elements is either the empty set, a point, or an entire edge. Define SN be the space of continuous piecewise linear
functions based on partition TN . VN = SN ∩ H1

0 (Ω). The finite element method for solving (1) is to find the approximate
solution uN ∈ VN satisfying

Ω

[(A∇uN) · ∇v + uN (b · ∇v) + d uNv] = 0, ∀v ∈ VN . (2)

In order to better describe and control the anisotropic mesh features, such as element sizes, aspect ratios, and alignment
directions, we restrict our analysis to a class of meshes that are quasi-uniform under a given metric. Let M be a continuous
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