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a b s t r a c t

For numerically solving fluid dynamics problems efficiently one is often facing the problem
of having to confine the computational domain to a small domain of interest introducing
so-called non-reflecting boundary conditions (NRBCs).

In this work we address the problem of supplying NRBCs in fluid simulations in two
space dimensions using the lattice Boltzmann method (LBM): so-called characteristic
boundary conditions are revisited and transferred to the framework of lattice Boltzmann
simulations.

Numerical tests show clearly that the unwanted unphysical reflections can be reduced
significantly by applying our newly developed methods. Hereby the key idea is to transfer
and generalize Thompson’s boundary conditions originally developed for the nonlinear
Euler equations of gas dynamics to the setting of lattice Boltzmann methods. Finally, we
give strong numerical evidence that the proposed methods possess a long-time stability
property.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For fluid simulations, the lattice Boltzmann method (LBM) has been proven to be a quite flexible tool [1–3]. Its ease of
implementation and its applicability to complex flows (includingmulticomponent flow,multiphase flow, obstacles, complex
physical interaction such as fluid structure interaction) make this method extremely attractive for real-world simulations.

To enable an efficient numerical simulation, often a small bounded simulation domain is needed. Such a situation is ob-
tained by confining the domain correspondingly. Thereby the physical boundaries are supplemented with some additional,
artificial boundaries, where numerical conditions have to be assigned to the state variables. Ideally, these boundaries and
these boundary conditions shall have no influence on the simulation result, i.e., the interaction of the artificial boundary
with numerical quantities shall at least be below the discretization error of the interior scheme. This is exactly the aim of
absorbing or non-reflecting boundary conditions (NRBCs).

Several studies have been made on NRBCs for direct solvers. Starting from the pioneering work for absorbing boundary
conditions for wave equations by Engquist and Majda [4], characteristic boundary conditions (CBCs) in the field of nonlinear
hyperbolic equations were developed by Hedstrom [5] and Thompson [6], which are non-reflecting. Kröner [7] derived
approximate, exact absorbing boundary conditions for the linear Euler equations. Poinsot and Lele [8] derived NRBCs for the
Navier–Stokes equations.

In a different fully discrete approach,Wilson [9] and later Rowley and Colonius [10] derived for the linear Euler equations
the NRBCs directly for the chosen numerical scheme. This approach has the advantage that these discrete boundary
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conditions are already perfectly adapted to the interior scheme resulting in higher accuracy and better stability properties
compared to the previous approaches. For a concise review article on absorbing boundary conditions for hyperbolic systems
we refer the interested reader to [11]. We remark that a closely related question is the construction of so-called far field
boundary conditions that are optimized to numerically approximate the stationary solution of the hyperbolic systems, cf. [12].

Let us emphasize that the situation of NRBCs for the LBM is completely different. Only a few studies have been made
on this subject, cf. [13] for a comparison of different approaches in an aeroacoustic application. Recently, Najafi-Yazdi
and Mongeau [14] developed an absorbing layer boundary condition, based on the perfectly matched layer (PML) concept.
Similarly, Tekitek et al. [15], proposed a lattice Boltzmann scheme modeling the PML of Bérenger. Another approach was
used by Izquierdo and Fueyo [16], who solved a system of differential equations and obtained a Dirichlet condition with
non-reflecting properties. Their procedure is an approximate method to the Navier–Stokes characteristic boundary condition
(NS-CBC) by Poinsot and Lele [8]. This system contains only one dimensional information at the artificial boundaries, so
their condition can be seen as an implementation of simplified Thompson’s boundary conditions [6] where higher spatial
derivatives are neglected. The aim of this work is to extend these known CBCs for the LBM application in two respects:
(a) inclusion of more spatial information (derivatives) at the artificial boundary and (b) enable possibly smaller reflection
rates.

To this end, this article is structured as follows. In Section 2 we present a short introduction to the LBM and also explain
briefly the construction of a boundary condition within this framework. Section 3 is devoted to a description of NRBCs.
Here the conditions are described continuously and are therefore formulated independently of the used numerical method.
Then, in Section 4 we explain how the boundary conditions of Section 3 are implemented within the fully discrete lattice
Boltzmann context in two dimensions. In the last section we present our numerical results of three test cases for the NRBCs
and finally we conclude.

2. The lattice Boltzmann method

The Boltzmann equation describes the evolution of the single particle distribution function f (x⃗, ξ⃗ , t):

∂ f (x⃗, ξ⃗ , t)
∂t

+ ξ⃗ · ∇f (x⃗, ξ⃗ , t) = Q (f ),

in terms of the space coordinate x⃗ ∈ Rd, molecular velocity ξ⃗ ∈ Rd, time t > 0 and collision termQ (f ). From thismesoscopic
description macroscopic quantities like the mass density ρ and the fluid velocity u⃗ are obtained by computing moments
of f .

The LBM can be regarded as a special discretization of the Boltzmann equation [17], where the molecular velocity space
ξ⃗ ∈ Rd is restricted to a finite set of given velocities c⃗i ∈ Rd, i = 0, . . . , nv . Next, for a given time step size 1t the spatial
discretization is obtained with the velocity set by 1x⃗ = c⃗i1t . That is, in the time period 1t particles move from one lattice
site x⃗ to a neighboring site x⃗+1x⃗. Commonly, in LBM the Boltzmann collision integral Q (f ) is approximated by a relaxation
towards a local equilibrium f (eq). Here we use the popular BGK model [18], which is a single relaxation time model. This
approach yields the following lattice Boltzmann equation [1]:

fi(x⃗ + c⃗i1t, t + 1t) − fi(x⃗, t) = −
1t
τ


fi(x⃗, t) − f (eq)

i (x⃗, t)

, (1)

which is an evolution equation for the discrete particle distribution fi (corresponding to c⃗i). The right-hand side, with the
free relaxation parameter τ , is the discrete BGK-model for Q (f ). The quantities fi(x⃗, t) are called populations. In this work,
we consider two space dimensions with 9 (nv = 8) lattice velocities (D2Q9 model):
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Moreover, the local equilibrium f (eq)
i is given here by:

f (eq)
i (x⃗, t) = wiρ(x⃗, t)
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(2)

with the weights w0 = 4/9, w1−4 = 1/9 and w5−8 = 1/36. The macroscopic quantities mass density and fluid velocity are
computed in each lattice point by

ρ(x⃗, t) =

8
i=0

fi(x⃗, t), u⃗(x⃗, t) =
1

ρ(x⃗, t)

8
i=1

c⃗ifi(x⃗, t). (3)
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