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a b s t r a c t

This note analyses the order reduction phenomenon of diagonally implicit Runge–Kutta
methods (DIRK methods) and Rosenbrock–Wanner methods (ROW methods) applied on
the Prothero–Robinson example. New order conditions to reduce order reduction are de-
rived, and a new third-order DIRK and ROW method is created. The new schemes are
applied to the Prothero–Robinson example and on the semi-discretised incompressible
Navier–Stokes equations. Numerical examples show that the new methods have better
convergence properties than comparable methods.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

One possibility for solving stiff ordinary differential equations (ODEs), such as the example of Prothero and Robinson [1]
or differential–algebraic equations, is to use Runge–Kuttamethods [2,3]. Explicitmethodsmay not be a good choice, because
to generate a stable numerical solution a stepsize restriction should be accepted, i.e., the problem should be solvedwith very
small time steps. Therefore it might be better to use implicit methods, such as for example Runge–Kutta methods, or linear-
implicit methods such as Rosenbrock–Wanner methods. But in these cases convergence may not be achieved [2,3], i.e., the
so-called order reduction phenomenon can be observed. The aimof this paper is to find further order conditions such that the
example of Prothero and Robinson can be solved numerically with almost full convergence order. In [2], convergence results
for implicit Runge–Kutta methods can be found where the so-called stage order plays an important role. Ostermann and
Roche prove in [4] that implicit Runge–Kutta methods may have a fractional order of convergence for general linear ODEs.
Similar results are presented for Rosenbrock–Wanner methods in [5]. As for diagonally implicit Runge–Kutta methods with
non-zero diagonal entries, Rosenbrock–Wannermethods can have only stage order 1. That is the reasonwhyOstermann and
Roche in [5] derive further order conditions for Rosenbrock–Wanner methods. Commonmethods such as ROS3P (see [6]) or
ROS34PW2 (see [7]) satisfy these order conditions and have less order reduction if they are applied on stiff ODEs or the semi-
discretisedNavier–Stokes equations [7–10]. In a paper of Scholz [11], a different approach canbe found for reducing the order
reduction. A Rosenbrock–Wannermethod satisfying the order conditions derived by Scholz [11] is themethod RODASP [12].

Fully implicit Runge–Kuttamethodsmay be ineffective for solving high-dimensional ODEs since they need a high compu-
tational effort, which can be reduced if diagonally implicit Runge–Kuttamethods are used. Since the stage order is limited to
1 if all diagonal entries are non-zero, Cameron in [13] introduced the so-called quasi stage order. This concept is improved in
[14], where themethod SDIRK2 is derived. Often DIRKmethods with an explicit first stage are used, since commonmethods
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have stage order 2 [15,16]. To reduce the order reduction, often order conditions for index-2 DAEs [17,18] are satisfied, as
is shown in [19,20].

A question which this note tries to answer is the following: Can we construct a DIRK method with stage order 1 which
converges with order ≥ 2 in the stiff case if applied, for example, to the ODE of Prothero and Robinson [1]?

Further considerations aremotivated by the following observation. In [21], an embeddedmethod for the fractional step-θ
scheme (a special diagonally implicit Runge–Kuttamethod) is introduced, and it is shown that this method has convergence
order 1. Solving the stiff example of Prothero and Robinson, it can be observed that the method converges with order 2 for
certain time step sizes, although the known theoretical results suggest a convergence order of 1.

In this note,we consider diagonally implicit and Rosenbrock–Wannermethods and apply them to the Prothero–Robinson
example. In Section 3,we consider the local error of these classes ofmethods in the non-stiff case and in the stiff case.Wewill
see that we get further order conditions which are needed to decrease the order reduction. A third-order diagonally implicit
Runge–Kutta method and a third-order Rosenbrock–Wanner method are created in Section 4, and finally we present some
numerical results and apply our new methods to the Prothero–Robinson example and the incompressible Navier–Stokes
equations.

2. Time discretisation

2.1. Rosenbrock–Wanner methods

First we consider an ODE of the form
u̇ = F(t,u), u(0) = u0. (1)

A Rosenbrock–Wanner-method (ROWmethod) with s internal stages is given by

ki = F

tm + αiτm, Ũi


+ τmJ

i
j=1

γijkj + τmγiḞ(tm,um), (2)

Ũi = um + τm

i−1
j=1

aijkj, i = 1, . . . , s,

um+1 = um + τm

s
i=1

biki, (3)

where J := ∂uF(tm,um), αij, γij, bi are the parameters of the method, and

αi :=

i−1
j=1

αij, γi :=

i−1
j=1

γij, γ := γii > 0, i = 1, . . . , s.

If the parameters αij, γij, and bi are chosen appropriately, a sufficient consistency order can be obtained. Additional con-
sistency conditions arise if J is only an approximation to ∂uF(tm,um), or if J is an arbitrary matrix. This class of methods is
calledWmethods [3]. If a ROWmethod is applied to a semi-discretised partial differential equation, further order conditions
should be satisfied to avoid order reduction; see [22].

The ROWmethod (2)–(3) requires the successive solution of s linear systems of equations with the samematrix I−γ τmJ .
The right-hand side of the ith linear system of equations depends on the solutions of the first to the (i − 1)th system. Thus,
a main difference between ROW methods and implicit methods is that it is not necessary to solve a nonlinear system of
equations in each discrete time but only a fixed number of linear systems of equations.

ROWmethods have the advantage that they allow an easy implementation of an adaptive time step length control. Con-
sider a ROWmethod of order p ≥ 2. An adaptive time step control employs a second ROWmethodwhich has the coefficients
aij, b̂i, and ci, i, j = 1, . . . , s, and order p − 1. The solution of the second method at tm+1 is given by

ûm+1 = um +

s
i=1

b̂iki.

Now, the next time step τm+1 is proposed to be

τm+1 = ρ
τ 2
m

τm−1


TOL · rm
r2m+1

1/p

, (4)

where ρ ∈ (0, 1] is a safety factor, TOL > 0 is a given tolerance, and rm+1 :=
um+1 − ûm+1

. This step size selection rule
is called a PI controller, and it goes back to Gustafsson et al. [23]. For details on the numerical error and the implementation
of automatic step length control, we refer to [2,24].

Next we apply the ROWmethod (2)–(3) to the Prothero–Robinson problem, i.e., on
u̇ = λ(u − ϕ(t)) + ϕ̇(t), u(0) = ϕ(0), λ < 0. (5)
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