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a b s t r a c t

We consider several possibilities on how to select a Filippov sliding vector field on a codi-
mension 2 singularity surface Σ , intersection of two codimension 1 surfaces. We discuss
and compare several, old and new, approaches, under the assumption that Σ is nodally
attractive. Of specific interest is the selection of a smoothly varying Filippov sliding vector
field. As a result of our analysis and experiments, the best candidates of the many possi-
bilities explored are those based on the so-called barycentric coordinates. In the present
context, one of these possibilities appear to be new.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Our purpose in this paper is to discuss, and compare, several possibilities on how to select a Filippov sliding vector field
on a codimension 2 singularity surface Σ , which is itself the intersection of two codimension 1 singularity surfaces. We
give a unifying framework within which to compare the various possibilities considered, and we will highlight and clarify
important connections to methods that have proven useful in computer graphics and finite elements techniques.

In this section,we review the basic problem and set up notation. Then, in Sections 2 and 3we look at different possibilities
for Filippov sliding vector fields. For convenience, we classify different choices as being either analytic–algebraic methods
or geometric methods; the distinction is only for convenience of introducing the methods, but the geometric methods we
consider can in fact be interpreted as special choices of analytic methods. Finally, in Section 4we see how onemay generally
reformulate the problem with respect to sub-sliding vector fields. In Section 5 we give our conclusions.

1.1. The problem and Filippov solutions

We are interested in piecewise smooth differential systems of the following type:

ẋ = f (x), f (x) = fi(x), x ∈ Ri, i = 1, . . . , 4, (1.1)

with initial condition x(0) = x0 ∈ Ri, for some i. Here, the Ri ⊆ Rn are open, disjoint and connected sets, and wemay as well
think that Rn

=


i Ri. Each fi is smooth on Ri, i = 1, . . . , 4, and we will assume that each fi is actually smooth in an open
neighborhood of the closure of each Ri, i = 1, . . . , 4. (Strictly speaking, this last assumption may actually be not needed,
but it simplifies some of the later exposition.)
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Table 1
Nodal attractivity.

Component i = 1 i = 2 i = 3 i = 4

w1
i >0 >0 <0 <0

w2
i >0 <0 >0 <0

Clearly, from (1.1), the vector field is not properly defined on the boundaries of the Ri’s. We are particularly interested in
analyzing what happens in this case, under the scenario that solution trajectories are attracted towards these boundaries.

1.2. Codimension 1: attractivity, existence and uniqueness

The classical Filippov theory (see [1]) is concerned with the case of two regions separated by a surface Σ defined as the
0-set of a smooth scalar valued function h:

ẋ = f1(x), x ∈ R1, and ẋ = f2(x), x ∈ R2,

Σ := {x ∈ Rn
: h(x) = 0}, h : Rn

→ R,
(1.2)

where ∇h is bounded away from 0 for all x ∈ Σ , hence near Σ . As in [1], we assume that h is a Ck function, with k ≥ 2.
Finally, without loss of generality, we label R1 such that h(x) < 0 for x ∈ R1, and R2 such that h(x) > 0 for x ∈ R2.

The interesting case is when trajectories reach Σ from R1 (or R2), and one has to decide what happens next. To answer
this question, it is useful to look at the components of the two vector fields f1,2 orthogonal to Σ:

w =


w1
w2


:=


∇h(x)⊤f1(x)
∇h(x)⊤f2(x)


, x ∈ Σ . (1.3)

Filippov theory is a first order theory (that is, based on nonvanishing wi, i = 1, 2) providing an answer to this situation. We
call Σ attractive in finite time if for some positive constant c , we have

∇h(x)⊤f1(x) ≥ c > 0 and ∇h(x)⊤f2(x) ≤ −c < 0,

for x ∈ Σ . In this case, trajectories starting near Σ must reach it and remain there: sliding motion. Filippov proposal is to
take as sliding vector field on Σ a convex combination of f1 and f2, fF := (1 − α)f1 + αf2, with α chosen so that fF ∈ TΣ (fF
is tangent to Σ at each x ∈ Σ):

x′
= (1 − α)f1 + αf2, α =

∇h(x)⊤f1(x)
∇h(x)⊤f1(x) − ∇h(x)⊤f2(x)

. (1.4)

1.3. Codimension 2: nodal attractivity

As we said, we are concerned with (1.1), where now the Ri’s are (locally) separated by two intersecting smooth surfaces
of co-dimension 1, Σ1 = {x : h1(x) = 0} and Σ2 = {x : h2(x) = 0}, and we have Σ = Σ1 ∩ Σ2. As before, we will assume
that ∇h1(x) ≠ 0, x ∈ Σ1, ∇h2(x) ≠ 0, x ∈ Σ2, that h1,2 are Ck functions, with k ≥ 2, and further that ∇h1(x) and ∇h2(x)
are linearly independent for x on (and in a neighborhood of) Σ .

We have four different regions R1, R2, R3 and R4 with the four different vector fields fi, i = 1, . . . , 4, in these regions:

ẋ = fi(x), x ∈ Ri, i = 1, . . . , 4. (1.5)

Without loss of generality, we can label the regions as follows:

R1 : f1 when h1 < 0, h2 < 0, R2 : f2 when h1 < 0, h2 > 0,
R3 : f3 when h1 > 0, h2 < 0, R4 : f4 when h1 > 0, h2 > 0.

(1.6)

We further let (cf. with (1.3))

w1
1 = ∇h⊤

1 f1, w1
2 = ∇h⊤

1 f2, w1
3 = ∇h⊤

1 f3, w1
4 = ∇h⊤

1 f4,

w2
1 = ∇h⊤

2 f1, w2
2 = ∇h⊤

2 f2, w2
3 = ∇h⊤

2 f3, w2
4 = ∇h⊤

2 f4,
(1.7)

and restrict to the case of Σ being nodally attractive, a condition characterized by the constraints on the sign of w1 and w2

expressed in Table 1, which are assumed to be valid on Σ and near it (uniformly away from 0).
According to the present setup, when x is near Σ , a trajectory through x will be attracted to Σ , and – upon reaching it –

will be forced to remain on it (sliding motion).

Remark 1.1. Nodal attractivity of Σ is just one of several different sufficient conditions under which Σ will attract nearby
trajectories. Arguably, nodal attractivity is the simplest of all these sufficient conditions and it serves as a fundamental
benchmark to evaluate different means for obtaining a sliding vector field on Σ . A more comprehensive classification of
attractivity conditions for Σ is in [2], and we are currently investigating the behavior of some of the methods examined
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