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a b s t r a c t

Certain symmetric linear multistep methods have an excellent long-time behavior when
applied to second order Hamiltonian systems with or without constraints. For high
accuracy computations round-off can be the dominating source of errors. This article shows
how symmetric multistep methods should be implemented such that round-off errors are
minimized and propagate like a random walk.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This article considers the numerical solution of constrained Hamiltonian systems

M q̈ = −∇U(q) − G(q)Tλ
0 = g(q),

(1)

where q ∈ Rd,M is a positive definite constant matrix, U(q) is a smooth real potential, g(q) ∈ Rm (with m < d) collects
holonomic constraints, and G(q) = g ′(q) is the matrix of partial derivatives. Assuming that G(q)M−1G(q)T is invertible, the
system (1) is a differential-algebraic equation of index 3. With the momentum p = Mq̇, the problem can be interpreted as
a differential equation on the manifold

M = {(q, p); g(q) = 0, G(q)M−1p = 0}. (2)

Its flow is a symplectic transformation on M, and it preserves the Hamiltonian (total energy)

H(q, p) =
1
2
pTM−1p + U(q). (3)

For a qualitative correct long-time integration of such systems the use of a geometric integrator is essential. An excellent
choice is the Rattle algorithm [1], which is a symplectic, symmetric one-step method. However, due to its low order of 2, it
is not efficient for high accuracy computations. Symplectic partitioned Runge–Kutta methods (such as the Lobatto IIIA–IIIB
pair) have arbitrarily high order, but they are implicit in the force evaluations. This article considers the use of explicit,
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symmetric multistep methods. With the notation f (q) = −∇U(q) they are given by

k
j=0

αj qn+j = h2
k−1
j=1

βj M−1

f (qn+j) − G(qn+j)

Tλn+j


0 = g(qn+k).

(4)

For given qn, . . . , qn+k−1 and λn+1, . . . , λn+k−2, the second relation implicitly defines λn+k−1, and the first relation gives
an explicit expression for qn+k. An approximation of the momentum p = Mq̇ is obtained a posteriori by symmetric finite
differences supplemented with a projection onto M:

pn = M
1
h

l
j=−l

δjqn+j + h G(qn)Tµn, G(qn)M−1pn = 0. (5)

The second relation represents a linear system for µn, and the first relation is an explicit formula for pn. By definition, this
method yields a numerical solution on the manifold M. It is proved in [2] (in the absence of constraints, see [3]) that under
suitable assumptions on the coefficientsαj andβj, themethod can have high order, and the numerical approximations nearly
conserve the Hamiltonian over very long time intervals. Its computational cost is essentially the same as that for the Rattle
algorithm, which makes it an excellent choice for high accuracy computations.

For computations close to machine accuracy, round-off errors can become more important than discretization errors.
This motivates the present study of the propagation of round-off errors. This article gives hints on how the method should
be implemented to reduce round-off errors and to obtain approximations for which the error in the Hamiltonian behaves
like a random walk. Numerical experiments are presented in a final section.

2. Reducing round-off errors

For a straightforward implementation of method (4)–(5), the round-off error typically increases linearly with time.
This can be observed for step sizes, for which the discretization error is close to machine precision. It is known [4] that
symplectic implicit Runge–Kutta methods can be implemented such that the round-off error is improved quantitatively
(using compensated summation) and qualitatively. This means that it behaves like a randomwalk and grows like the square
root of time. This section shows how the same behavior can be achieved for symmetric multistep methods.

2.1. Separation into difference equations for position and momentum

For consistent multistepmethods (4) the characteristic polynomial ρ(ζ ) of the coefficients αj has a double zero ζ = 1. In
the limit h → 0, the solution of the difference equation (4) is unbounded, a fact which provokes an undesired accumulation
of round-off errors. There are two possibilities to avoid thisweak instability. Either oneworkswith sums of fj values (summed
form of [5, Section 6.4-1]) or with differences of qj values (stabilized algorithm of [6, Section III.10]). We use the second
approach, because it is closer to the standard use of the Rattle algorithm.

For the difference of two consecutive qj values we introduce momentum approximations on a staggered grid. Denoting
by α̂j the coefficients of the polynomial ρ(ζ )/(ζ − 1), i.e., αk = α̂k−1 and αj = α̂j−1 − α̂j for j = 1, . . . , k − 1, the method
(4) is mathematically equivalent to

k−1
j=0

α̂j pn+j+1/2 = h
k−1
j=1

βj


f (qn+j) − G(qn+j)

Tλn+j


qn+k = qn+k−1 + hM−1pn+k−1/2

0 = g(qn+k).

(6)

Concerning the propagation of round-off errors there is a big difference from (4), because in the limit h → 0 the two
difference equations (for position and momentum) have bounded solutions. The approximation of the momenta can be
expressed in terms of pn+j+1/2 as

pn =

l−1
j=−l

δ̂j pn+j+1/2 + h G(qn)Tµn, G(qn)M−1pn = 0, (7)

where the coefficients δ̂j are given by δ̂l−1 = δl and δj = δ̂j−1 − δ̂j for j = −l + 1, . . . , l − 1. Compared to (5) this formula
for pn is less affected by round-off errors, because the difference operator approximates a function and not a derivative.
This reformulation is less important than the previous one, because pn is not used in the step by step application of the
method.
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