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a b s t r a c t

Numerical integration methods for nonlinear differential-algebraic equations (DAEs) in
strangeness-free form are studied. In particular, half-explicit methods based on popular
explicit methods like one-leg methods, linear multistep methods, and Runge–Kutta meth-
ods are proposed and analyzed. Compared with well-known implicit methods for DAEs,
these half-explicit methods demonstrate their efficiency particularly for a special class of
semi-linear matrix-valued DAEs which arise in the numerical computation of spectral in-
tervals for DAEs. Numerical experiments illustrate the theoretical results.
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1. Introduction

Differential-algebraic equations are an important and convenient modeling concept in many different application areas
such as multibody mechanics, circuit design, optimal control, chemical reactions, and fluid dynamics, see [1–7] and the ref-
erences therein. In this work, we discuss efficient numerical integration methods for initial value problems associated with
differential-algebraic equations (DAEs) of the form

f (t, x(t), ẋ(t)) = 0
g(t, x(t)) = 0,

(1)

on an interval I = [t0, tf ], together with an initial condition x(t0) = x0. Here we assume that f = f (·, ·, ·) : I × Rn
× Rn

→

Rd and g = g(·, ·) : I × Rn
→ Ra, where n = d + a, are sufficiently smooth functions with bounded partial derivatives.

Furthermore, we assume that (1) is strangeness-free, see [5, Definition 4.4], which means that the combined Jacobian
fẋ(t, x(t), ẋ(t))

gx(t, x(t))


(2)

is nonsingular along the solution x(t).
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Throughout this paper, for the analysis of the numerical method we assume that the initial value problem for (1) has a
unique solution x∗(t) which is sufficiently smooth and that the derivatives of x∗ are bounded on I. Furthermore, f and g are
assumed to be sufficiently smooth with bounded partial derivatives in a neighborhood of (t, x∗(t)), t ∈ I. For the purpose of
analysis, due to the assumption (1), the state x in (1) can be reordered and partitioned as x = [xT1, x

T
2]

T , where x1 : I → Rd,
x2 : I → Ra, so that the Jacobian gx2 of g with respect to the variables x2 (or fẋ1 of f with respect to ẋ1) is invertible in
the neighborhood of the solution. If gx2 is nonsingular, then it has been shown in [5, Theorem 4.11] that (1) can be locally
transformed to a system of the form

ẋ1 = L(t, x1), x2 = R(t, x1). (3)
Strangeness-free DAEs of the form (1) have differentiation index 1 (see e.g. [1]) and they typically arise from the reduction
process described in [5, Section 4.1] applied to general implicit nonlinear DAEs

G(t, x, ẋ) = 0, t ∈ I. (4)
Linearizing (1) along x∗ yields a linear DAE with coefficient functions

E(t) =


E1(t)
0


=


fẋ(t, x∗, ẋ∗)

0


, A(t) =


A1(t)
A2(t)


=


fx(t, x∗, ẋ∗)
gx(t, x∗)


. (5)

We will frequently use this linearization in the analysis of the numerical methods presented in this paper, for consistency,
stability and convergence, see [8] or [5, Section 5.1] in the DAE framework.

The DAE (1) is more general than DAEs of differentiation index 1 in semi-explicit form, which is the special case that
fẋ1 = Id and fẋ2 = 0, since here ẋ2 is involved in the differential part, too. However, the algebraic constraint is explicitly
given and this fact can be exploited when constructing numerical methods for solving (1). Furthermore, there is an inter-
esting relationship of (1) to semi-explicit DAEs of differentiation index 2, [3]. If x is reordered and partitioned so that fẋ1 is
nonsingular, then we may introduce new variables y1 = x1, y2 = x2, z = ẋ2 and (1) is equivalent to

0 = φ(t, y(t), z(t), ẏ(t)),
0 = γ (t, y(t)),

(6)

where

φ(t, y(t), z(t), ẏ(t)) =


f (t, y1(t), y2(t), ẏ1(t), z(t))

ẏ2(t) − z(t)


, γ (t, y(t)) = g(t, y(t)).

Condition (2) together with the nonsingularity of fẋ1 implies that γy(φy)
−1φz(t, y(t), z(t), ẏ(t)) is nonsingular along the

solution. Invoking the Implicit Function Theorem, there exists a function ϕ such that (6) can be rewritten as

ẏ(t) = ϕ(t, y(t), z(t)),
0 = γ (t, y(t)),

(7)

with nonsingular Jacobian [γyϕz](t, y(t), z(t)). In the literature, (7) is called an index-2 DAE in semi-explicit form.
Numerical methods for DAEs of index at most two, including those in semi-explicit form, are analyzed in [1,9,3,4] and

several software packages for DAEs are available, see [5, Chapter 8]. In particular, it has been shown, see [5, Chapter 5], that
for regular strangeness-free DAEs of the form (1), well-known implicit methods like Runge–Kutta collocation methods and
BDF methods are convergent of the same order as for ordinary differential equations (ODEs).

In this paper we study half-explicit methods (HEMs) for strangeness-free DAEs of the form (1). Such methods based
on explicit Runge–Kutta methods have been suggested in [10–12,4,13] for the efficient integration of semi-explicit DAEs
ẋ = f (t, x, y), 0 = g(t, x, y) of differentiation index less than or equal to two. One applies an explicit integration scheme to
the differential part and an implicit scheme (even simply the implicit Euler scheme) to the algebraic part. In every integration
step this combination yields an algebraic system which uniquely determines the numerical solution. In general, the
complexity of suchmethods is smaller than that of fully implicit schemes and the implementation is less complicated aswell.

Here we propose and analyze half-explicit methods for the systems of the form (1) for which the convergence analysis
has not been discussed yet in the literature.

Ourmainmotivation to study half-explicit methods for problems of the form (1) arises from a special class of semi-linear
matrix-valued DAEs of the form

E1(t)Ẋ(t) = F(t, X(t)),
0 = A2(t)X(t),

(8)

where E1 : I → Rd×n, A2 : I → Ra×n are continuous matrix valued functions, and X : I → Rn×ℓ (1 ≤ ℓ ≤ d) and
F : I × Rn×ℓ

→ Rd×ℓ are (nonlinear) matrix-valued functions as well.
Matrix-valued DAEs of the form (8) arise in the stability analysis of DAEs via the numerical approximation of Lyapunov or

Sacker–Sell spectral intervals by methods as developed recently in [14,15]. In this application one has to solve strangeness-
free DAEs of the form (8), i.e., with nonsingular Ē(t) =


E1(t)T A2(t)T

T , on a very long interval [0, tf ] with tf = O(103) −

O(106). Furthermore, the exact solution has to satisfy some orthogonality condition in addition to the algebraic constraint
explicitly given in (8), i.e., it is a DAE operating on the set of n×ℓ isometries. In order to approximate the spectral quantities
accurately, the numerical solution must satisfy both conditions within machine precision [15].
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