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1. Introduction

Multi-objective optimization is the process of simultaneously optimizing two or more objectives subject to certain
constraints.
We consider a multi-objective optimization problem (MOP) as follows:

MOP : minf(x) = (fi(®), (), ... fp®)), (1)

where X C R" is a nonempty feasible set, and f is a vector-valued function composed of p (p > 2) real-valued functions.
The image of X under f is denoted by Y := f(X) C RP and referred to as the image space.

Fory,y € RP,
ey <ymeansy, < yiforallk=1,...,p,
e y<ymeansy, <y, forallk=1,...,p,

e y<ymeansy < ybuty #£y.
In this paper, we use the above componentwise orders to order the objective space and define the cone R? = {x € RP|x >
0}. -

Definition 1.1. A feasible solution X € X is called an efficient solution of MOP (1) if there is no x € X such that f(x) < f(x).
If X € X is efficient then f (%) is called a nondominated point.

Definition 1.2. A feasible solution X € X is called a weakly efficient solution of MOP (1) if there is no x € X such that
f(x) < f(x).Ifx € X is weakly efficient then f (%) is called a weakly nondominated point.

* Corresponding author. Tel.: +98 021 6406322; fax: +98 021 649793.
E-mail addresses: eskhor@aut.ac.ir (E. Khorram), khaledian.k@aut.ac.ir (K. Khaledian), mkh.1986@gmail.com (M. Khaledyan).

0377-0427/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cam.2013.11.007


http://dx.doi.org/10.1016/j.cam.2013.11.007
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2013.11.007&domain=pdf
mailto:eskhor@aut.ac.ir
mailto:khaledian.k@aut.ac.ir
mailto:mkh.1986@gmail.com
http://dx.doi.org/10.1016/j.cam.2013.11.007

E. Khorram et al. / Journal of Computational and Applied Mathematics 261 (2014) 158-171 159

The set of all efficient and weakly efficient solutions of MOP (1) are denoted by X; and Xy, respectively, and their images
are called Pareto front and weak Pareto front, denoted by Yy and Yy, respectively.

Definition 1.3. The point f* = (f]", ... ,fp*)T, where f* = minyex fi(x) fori = 1, ..., p, is called the Ideal point of MOP (1).

A common approach for determining the solutions of a MOP is reformulating it to a parameters dependent scalar
optimization problem. By solving the scalar problem for a variety of parameters, several solutions of the MOP are generated.
For a survey on scalarizing (and non-scalarizing) techniques, the reader is referred to [1]. There has been a great deal of
effort by researchers in developing methods to generate an approximation of the Pareto front, see e.g. [2-11]. In most
of these works, various types of scalarization are considered. In this paper, we concentrate on the Pascoletti and Serafini
scalarization [12], and present a numerical method based on it for constructing an approximation of the Pareto front of
general MOPs (nonlinear and nonconvex). An advantage of the Pascoletti and Serafini scalarization is that it is very general
in the sense that many other scalarization approaches such as the weighted Tchebycheff method and the e-constraint
method can be seen as a special case of it; see [6]. Further, it is defined for general partial orderings rather than the
natural ordering [12]. Our proposed method shares conceptual similarity with the approach proposed in [6], in its use of the
Pascoletti and Serafini scalarization.

The Pascoletti and Serafini scalarization has two parameters named a and r, selected from RP. The method proposed in [6]
attempts to limit the choices of a from R?, and still obtain all the efficient solutions. This method might be hard to verify in
practice, since to implement the approach in [6], one needs to obtain a restricted hyperplane in the objective space where
the parameter a changes on it. Obtaining this restricted hyperplane is simple for two objective problems, but in three and
more than three objective problems is hard in practice. In comparison with the method in [6], our method can locate the
Pareto front quite easily in most cases. In Section 2.2 the method in [6] is briefly discussed (for more information see [6, pp.
31-47)).

We proceed as follows. In Section 2, the Pascoletti and Serafini scalarization is briefly reviewed and some of its properties
are given. In Section 3, the new parameter restriction for the Pascoletti and Serafini scalarization is proposed, and based on
it the Pareto front is approximated. In Section 4, the proposed method is applied to four test problems and the results are
compared with the results from NSGA-II and NC methods. Finally, conclusions are presented in Section 5.

2. Pascoletti and Serafini scalarization

In this section, a brief review of the Pascoletti and Serafini scalarization [12] is given. Pascoletti and Serafini propose the
following scalar optimization problem with parameters a, r € RP, in order to characterize weakly efficient and efficient
solutions of MOP (1) w.r.t. the ordering cone K:

min t
s.t.
a+tr—f(x) €K, (SP(a,r))
X eX,
t eR.
In this paper we assume K = R’;.
In order to solve the SP(a,r) f)roblem, the ordering cone —]R’; is moved in direction r (or —r) on the line a + tr
starting in the point a until the set (a + tr — Rg) NfX) is reduced to the empty set. The smallest value t for which
(a +tr — Rg) N fX) # @ is the minimal value of SP(a, r) [6]. This is illustrated in Fig. 1 for a two-objective problem.

2.1. Properties of the Pascoletti and Serafini scalarization

The Pascoletti and Serafini scalarization is very general, in the sense that many other scalarization approaches such as
the e-constraint method and the weighted Tchebycheff method can be seen as a special case of it; see [6]. For example, the
formulation of the weighted Tchebycheff method is as follows:

min max w;(fi(x) — a;),
xeX i=1,..., D
where w; > Ofori=1,...,panda € RP. If we set K = ]Rg andr; = wi, then the weighted Tchebycheff method and the

Pascoletti and Serafini scalarization coincide.
In the following, Section b of Theorem 2.1 in [6] is given.

Theorem 2.1. Let X be an efficient solution of MOP (1), then (0, X) is an optimal solution of SP(a, r) for the parameters a = f ()
and arbitrary r € RY \ {0}.

Remark. Note that, as mentioned in [6], it is possible that for some parameters a, r € RP the problem SP(a, r) is unbounded
from below.
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