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a b s t r a c t

Following the scaled conjugate gradient methods proposed by Andrei, we hybridize the
memoryless BFGS preconditioned conjugate gradient method suggested by Shanno and
the spectral conjugate gradient method suggested by Birgin and Martínez based on a
modified secant equation suggested by Yuan, and propose two modified scaled conjugate
gradient methods. The interesting features of our methods are applying the function
values in addition to the gradient values and satisfying the sufficient descent condition
for the generated search directions which leads to the global convergence for uniformly
convex functions. Numerical comparisons between the implementations of one of our
methods which generates descent search directions for general functions and an efficient
scaled conjugate gradient method proposed by Andrei are made on a set of unconstrained
optimization test problems from the CUTEr collection, using the performance profile
introduced by Dolan and Moré.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Conjugate gradient (CG) methods comprise a class of unconstrained optimization algorithms characterized by low
memory requirements and strong global convergence properties [1,2]. Although CG methods are not the fastest or most
robust optimization algorithms for nonlinear problems available today, they remain very popular for engineers and
mathematicians engaged in solving large-scale problems in the following form:

min
x∈Rn

f (x), (1.1)

where f : Rn
→ R is a smooth nonlinear function and its gradient is available. The iterative formula of a CGmethod is given

by

x0 ∈ Rn, xk+1 = xk + sk, sk = αkdk, k = 0, 1, 2, . . . , (1.2)

where αk is a steplength to be computed by a line search procedure and dk is the search direction defined by

d0 = −g0, dk+1 = −gk+1 + βkdk, k = 0, 1, 2, . . . , (1.3)

in which gk = ∇f (xk) and βk is a scalar called the CG (update) parameter. The steplength αk is usually chosen to satisfy
certain line search conditions [3,4]. Among them, the so-called Wolfe line search conditions [5,6] have attracted special
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attention in convergence analysis and implementation of the CG algorithms, requiring that

f (xk + αkdk) − f (xk) ≤ δαk∇f (xk)Tdk, (1.4)

∇f (xk + αkdk)Tdk ≥ σ∇f (xk)Tdk, (1.5)

where 0 < δ < σ < 1.
Different choices for the CG parameter in (1.3) lead to different CGmethods (see [7] and the references therein). Although

the CG methods are often equivalent in the linear case, that is, when f is a strictly convex quadratic function and αk is
computed by an exact line search, their behavior for general functions may be quite different [8–10].

The interesting feature of linear CG methods leading to the important n-step termination property [3,4] is generation of
the search directions {dk}k≥0 satisfying

dTi Hdj = 0, ∀i ≠ j, (1.6)

where H is the Hessian matrix of the objective function. For a general nonlinear function f , from the mean-value theorem
there exists some ξ ∈ (0, 1) such that

dTk+1(gk+1 − gk) = αkdTk+1∇
2f (xk + ξαkdk)dk.

Therefore, in order to compute the CG parameter βk for a nonlinear CG method in the form of (1.2)–(1.3), it is reasonable to
replace (1.6) with the following conjugacy condition:

dTk+1yk = 0, (1.7)

where yk = gk+1 − gk. The conjugacy condition (1.7) is effective since it leads to the efficient CG method proposed by
Hestenes and Stiefel (HS) [11] in which the CG parameter, namely βHS

k , is computed by

βHS
k =

gT
k+1yk
dTkyk

.

To find more efficient CG methods following the HS method, researchers paid special attention to modify the CG param-
eter βHS

k by applying the function and the Hessian matrix information (see [12] and the references therein). For example,
Perry [13] noted that the search direction dk+1 in the HS method can be written as

dk+1 = −


I −

dkyTk
dTkyk


gk+1 = −


I −

skyTk
sTkyk


gk+1.

So, he proposed a modification on the HS method in which the search direction dk+1 is computed by

dk+1 = −


I −

skyTk
sTkyk

+
sksTk
sTkyk


  

Pk+1

gk+1 = −Pk+1gk+1. (1.8)

Perry justified the addition of the correction term sksTk/s
T
kyk by noting that the matrix Pk+1 in (1.8) satisfies the following

equation:

yTkPk+1 = sTk ,

which is similar, but not identical, to the standard secant equation [3,4] defined by

∇
2f (xk+1)sk = yk, or equivalently, ∇

2f (xk+1)
−1yk = sk. (1.9)

To improve Perry’s method, Shanno [14] modified the matrix Pk+1 as follows:

PS
k+1

def
= I −

skyTk + yksTk
sTkyk

+


1 +

yTkyk
sTkyk


sksTk
sTkyk

. (1.10)

Thus, the related CG method is precisely the BFGS method proposed by Broyden [15], Fletcher [16], Goldfarb [17] and
Shanno [18], in which the approximation of the inverse Hessian is restarted as the identity matrix at every step and so,
no significant storage is needed to develop a better approximation for the inverse Hessian (this idea was first discussed
by Nazareth [19] and Buckley [20]). It can be shown that if the line search procedure guarantees that sTkyk > 0, then PS

k+1
defined by (1.10) is a positive definite matrix [3,4] and consequently, the search directions generated by dk+1 = −PS

k+1gk+1,
for all k ≥ 0, are descent directions.

In a different effort to enhance the efficiency of the CGmethods, Birgin andMartínez [21] proposed a spectral CGmethod
in which the search directions are defined by

d0 = −g0, dk+1 = −θk+1gk+1 + βkdk, k = 0, 1, 2, . . . , (1.11)
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