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a b s t r a c t

A new method for fast evaluation of thin plate splines in two dimensions is presented.
The paper first develops exponential approximations to thin plate splines. These are
the analytical basis for an improved fast multipole evaluator. Analytic error bounds are
supplemented by offline parallel numerical computation of the underlying error constants.
These error constants enable adaptive selection of series lengths as a function of the
weights associated with a source panel, and the desired accuracy. Numerical comparisons
with a competing algorithm show that the new method is significantly faster when
moderate to high precision is required.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Radial basis functions (RBFs) on Rd are functions of the form

s(·) = p(·) +

N
i=1

λiΦ(· − xi). (1)

Here, Φ , the basic function, is a fixed function mapping Rd
→ R, and p is a low degree polynomial. The points {xi} are called

the centers. Initially these functions were studied for their beautiful theory. More recently they have become a standard
tool in many applications. Examples are surface reconstruction, uses in medicine such as in the custom manufacture of
artificial limbs and of cranial prostheses, use in modeling aquifers, and use in mineral exploration software such as the
Leapfrog package. For all these applications there is one immediate drawback in the formgiven in Eq. (1). Namely, algorithms
directly based on this expression for an RBFwill requireO(N) arithmetic operations for evaluation of s at a single extra point
x. Further, non-specialized methods for fitting such an RBF s to N pieces of data, for example by interpolation, will require
O(N3) arithmetic operations. Fortunately, the use of fast algorithms, see for example [1], or of compactly supported kernels,
see Wendland [2], dramatically reduces the incremental cost of a single extra evaluation, for example to O(1) operations,
ignoring the cost of finding the panel containing the evaluation point. Also, numerical experiments show that iterative fitting
methods employing these fast algorithms to compute matrix–vector products, typically solve interpolation problems with
N nodes in O(N(logN)2) operations, rather than O(N3).

This paper concerns an improved fast evaluation method for thin plate splines in two dimensions. The algorithm and
code considered approximates the values of an N center RBF at m evaluation points. The paper develops exponential
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approximations to thin plate splines. These exponential approximations are used in an improved fastmultipole (FM)method
as an intermediate step in obtaining local polynomial approximations. This intermediate exponential approximation idea
was first used byHrycak and Rokhlin [3] in theirmethod for fast evaluation of two dimensional potentials. Another feature of
the currentwork is that tight estimates of error constants determining the accuracy of the approximationprocedure involved
have been obtained via large scale offline parallel computation. These constants enable adaptive selection of series lengths
depending on the weights associated with a source panel, and the required accuracy. This makes it easy to approximately
minimize the amount of work done in order to obtain something very close to the desired accuracy. In contrast, with other
algorithms, such as [1], it is somewhat difficult to minimize the work by selecting the parameters to give just the required
precision. Numerical experiments show that the method performs very well in practice with the execution time for the task
of evaluating an RBF based on N centers at slightly more than N points scaling approximately linearly with N . Theoretically
the operation count can be bounded by AN logN + B logN , with the N logN part coming from sorting centers into panels.
However, A is so small compared with B that the timings, even for N in the millions, are dominated by the BN part.

Recently a non uniform FFT based fast summation code, NFFT code for short, has been demonstrated to be competitive
with a fast multipole method for the potential with a desired 10−6 relative error (see Tables 3.1, 4.1 in [4,5] respectively). In
numerical comparisons our updated FM algorithm for the thin plate spline is significantly faster than the NFFT code when
mid to high precision is required. It is only slightly faster than the NFFT code when the required precision is small.

The paper is laid out as follows. Section 2 discusses the idea of an intermediate exponential approximation originally
due to Hrycak and Rokhlin [3]. It also sets out an outline of a general fast multipole algorithm. Section 3 discusses multipole
expansions for thin plate splines. Section 4 develops exponential approximations for thin plate splines, for source and target
panels in a standard scaling and geometry. Section 5 considers such approximations when the panels are scaled and rotated.
Section 6 considers the process of forming, and error bounds for, the final piecewise polynomial approximation. Section 7
presents numerical results comparing the performance of direct evaluation, our current implementation, and an NFFT code
downloaded from [6].

2. Hrycak and Rokhlin’s improved fast multipole method for potentials 1/(z − t)

This section briefly discusses Hrycak and Rokhlin [3] improved fast multipole method for fast evaluation of a potential
λi/(z − zi).
In outline, and ignoring many subtleties, a fast multipole procedure for evaluation of a sum s(x) =

N
i=1 λiΦ(x − xi)

consists of the following steps.

Algorithm 1. SETUP: Given the centers and weights {(xi, λi)} and a basic function Φ

• Step 1: Construct a tree which at each new level creates child panels by splitting parent panels, assigning the centers xi
belonging to the parent to the appropriate children. In R2 the tree is often chosen to be a quadtree.

• Step 2: Starting at the leaf nodes work up the tree constructing for each panel, T , a truncated far field expansion which
approximates the influence of the panel, at points far from the panel.

• Step 3:Work down the tree level by level. At level ℓ, andworking on panel T , first recenter the polynomial approximation
associated with the parent of T . Then considering each panel S as a source construct polynomials approximating
its influence in each nearby target panel T . Sum these polynomials to construct for each panel T a polynomial
approximating the influence of all panels well separated from T .

EVALUATION: Given a point x at which to evaluate s(x).

• Step 1: Find the panel T containing x.
• Step 2: Evaluate s(x) by using the local polynomial approximation summarizing the influence of all the panels far away

from T to approximate the far field, and evaluating the near field directly.

The reader who is not familiar with these algorithms will find more detailed descriptions in [1,7].
In the case of the potentialΦ(z−t) = 1/(z−t)Hrycak and Rokhlin [3] use exponential approximations to improve step 3

of the setup stage of Algorithm 1. They do this by first converting far field approximations to exponential approximations,
and then approximating these exponential approximations by local Taylor polynomials. Their exponential approximations
are of the form

L
ℓ=1

wℓ e−xℓ(z−t)
≈

1
z − t

, (2)

where wℓ and xℓ are specified coefficients, t ∈ Q , z ∈ R0, and Q and R0 are sets specified in Section 4 below. These
approximations give impressively high accuracy for the number of terms L. The apparatus for finding the exponential
approximation formulas, also known as quadrature formulas, was developed by Yarvin and Rokhlin [8]. Tables of nodes
and weights can be found at [9].

The procedure can be anticipated to be an improvement for at least three reasons. First, the exponential approximations
have relatively few terms for the given accuracy. Second, recentering exponentials e−xℓz to the center, t , of a target panel is a
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