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a b s t r a c t

In this paper, we propose a least squares regularized regression algorithm with
l1-regularizer in a sum space of some base hypothesis spaces. This sum space containsmore
functions than single base hypothesis space and therefore has stronger approximation
capability. We establish an excess error bound for this algorithm under some assumptions
on the kernels, the input space, the marginal distribution and the regression function.
For error analysis, the excess error is decomposed into the sample error, hypothesis
error and regularization error, which are estimated respectively. From the excess error
bound, convergency and a learning rate can be derived by choosing a suitable value of the
regularization parameter. The utility of this method is illustrated with two simulated data
sets and one real life database.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let X be a compact metric space and Y = R. Suppose that ρ is a fixed (but unknown) probability distribution on
Z := X × Y . The regression function is defined as

fρ(x) =


Y
ydρ(y|x), x ∈ X,

where ρ(y|x) is the conditional probability measure at x induced by ρ. The error for a function f : X → Y with squared loss
is defined as

E(f ) =


Z
(f (x) − y)2dρ.

It is well known that the regression function minimizes the error. Indeed,

∥f − fρ∥
2
ρX

= E(f ) − E(fρ),

where ρX is the marginal distribution of ρ on X and ∥f ∥2
ρX

=

X |f (x)|2dρX . The above difference is called the excess error

of f .
The task is to find a good approximation fz to fρ from a set of samples z = {(xi, yi)}mi=1 which are drawn independently

and identically distributed according to ρ. However, approximating a function from sparse samples is an ill-posed problem.
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To deal with it, a regularization technique is needed [1–3]. Given a set of functions H from X to Y called hypothesis space
and a penalty functionalΩ : H → R+ called the regularizer, it searches for an approximation of fρ by the following scheme:

fz,H = argmin
f∈H

{Ez(f ) + λΩ(f )} ,

where Ez(f ) is the empirical error

Ez(f ) =
1
m

m
i=1

(f (xi) − yi)2 ,

and λ > 0 is a regularization parameter.
In learning theory, the hypothesis space is commonly chosen as reproducing kernel Hilbert space (RKHS). Let K : X ×

X → R be continuous, symmetric and positive semidefinite. Such a function is called a Mercer kernel. The reproducing
kernel Hilbert space HK associated with the kernel K is defined to be the closure of the linear span of the set of functions
{Kx := K(x, .) : x ∈ X} with the inner product ⟨. , .⟩HK = ⟨., .⟩K , satisfying ⟨Kx, Kx′⟩K = K(x, x′). The reproducing property
takes the form ⟨Kx, f ⟩K = f (x), for x ∈ X , and f ∈ HK . The regularization in HK with the norm square regularizer is given as

fz,HK = arg min
f∈HK


Ez(f ) + λ∥f ∥2

K


.

It has been well understood due to a lot of studies [4–6].
Recently, the coefficient-based regularizer has attracted more and more attention. Xiao and Zhou proposed a regulariza-

tion schemewith l1-regularizer [7]. They defined a data dependent hypothesis space and chose the l1 normof the coefficients
as the regularizer. The l1-regularizer is attractive because of its sparse property in experiments, i.e., most coefficients in the
solution vanish. Shi et al. studied the sparsity of this algorithm in theory based on their error analysis [8]. Sun andWu stud-
ied regularized learning schemes with l2-regularizer and obtained faster learning rates than that with l1-regularizer while
their assumptions were less restrictive [9]. Tong et al. considered the coefficient-based regularized least-squares regression
problem with the lp-regularizer for 1 ≤ p ≤ 2 [10].

All the above-mentioned coefficient-based regularization algorithms are implemented in a hypothesis space generated
by a single kernel function. However, in some complicated cases, it is found that kernelmethodswith a single kernel function
cannot meet some practical requirements such as heterogeneous information, unnormalized data, large scale problems and
non-flat distribution of samples [11–14]. In these cases, multiple kernel methods are needed, which search for a linear
combination of base kernel functions [15,16].

In this paper,we consider a regularized least-squares regression problemwith l1-regularizer in a hypothesis space trained
from samples by multi-scale kernels. Let {K j

}
l
j=1 be a sequence of Mercer kernel functions. The hypothesis space on sample

set z is defined as

F⊕,z =


l

j=1

m
k=1

α
j
kK

j
xk : α

j
k ∈ R


.

For f =
l

j=1
m

k=1 α
j
kK

j
xk , define the regularizer as:

Ωz(f ) =

l
j=1

m
k=1

|α
j
k|.

The learning algorithm is given by

f⊕,z,λ = arg min
f∈F⊕,z

{Ez(f ) + λΩz(f )} ,

where λ > 0 is a regularization parameter.
In [7], a hypothesis space was proposed, which depended on samples. In our setting, the hypothesis space is a sum space

of multiple base hypothesis spaces in [7]. This sum space contains more functions than every base hypothesis space and
therefore have a stronger approximation capability. Every hypothesis function is determined by its l × m coefficients and
the penalty is imposed on all these coefficients. In fact, we have

f⊕,z,λ = argmin
α
j
k∈R

 1
m

m
i=1


l

j=1

m
k=1

α
j
kK

j
xk(xi) − yi

2

+ λ

l
j=1

m
k=1

|α
j
k|

 .

For a non-flat function approximation problem, multi-scale kernels learning is more efficient, in which the kernels
with small and large scales can deal with the steep and smooth variations, respectively [17,18,14,19]. The multi-scale
kernels could be chosen as Gaussian kernels with different widths, wavelet-based kernels, frame-based kernels, and so
on. In numerical experiments, existing multi-scale kernel methods perform better than single kernel methods in reducing
prediction errors. However, there are fewpapers that have considered convergency and learning rates formulti-scale kernels
methods.
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