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a b s t r a c t

The one-step estimator, covering various penalty functions, enjoys the oracle propertywith
a good initial estimator. The initial estimator can be chosen as the least squares estimator
or maximum likelihood estimator in low-dimensional settings. However, it is not available
in ultrahigh dimensionality. In this paper, we study the one-step estimator with the initial
estimator being marginal ordinary least squares estimates in the ultrahigh linear model.
Under some appropriate conditions, we show that the one-step estimator is selection
consistent. Finite sample performance of the proposed procedure is assessed by Monte
Carlo simulation studies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider the linear regression model

Yi = β0 +

pn
j=1

Xijβj + εi, i = 1, . . . , n,

where Yi is the response variable, Xij is the covariate or design variable and εi is the error term. In many applications, such as
studies involvingmicroarray ormass spectrum data, the total number of covariates pn can be large or evenmuch larger than
n, but the number of important covariates is typically smaller than n.Without loss of generality, we assume that the outcome
is centered and the predictors are standardized, i.e.

n
i=1 Yi = 0,

n
i=1 Xij = 0 and n−1n

i=1 X
2
ij = 1, j = 1, . . . , pn, so the

intercept β0 is not included in the regression function.
Zou and Li [1] proposed the one-step sparse estimator, which is defined by minimizing

1
n

n
i=1


Yi −

pn
j=1

Xijβj

2

+

pn
j=1

p′

λn
(|β̃j|)|βj|, (1.1)

where β̃ = (β̃1, . . . , β̃p)
T is the initial value, and p′

λn
(·) is the derivative of penalty function. Several important penalty

functions have been proposed, and include the bridge [2] with pλn(|t|) = λn|t|q, the least absolute shrinkage and selection
operator (Lasso, [3]) with pλn(|t|) = λn|t|, the smoothly clipped absolute deviation (SCAD) penalty [4] with pλn(|t|, a)
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= λ|t|I(|t| < λ) + {(a2 − 1)λ2
− [(aλ − |t|)+]

2
}I(λ 6 |t|)/[2(a − 1)], the minimax concave penalty (MCP, [5]) with

pλn(|t|, γ ) = [λn|t| − t2/(2γ )]I(|t| < γλn) + γ λ2
n/2I(|t| > γ λn), and so on.

High-dimensional data analysis has become increasingly frequent and important in diverse fields of sciences, engineer-
ing, and humanities. Much progress has been made in the ultrahigh dimensional linear model. Meinshausen and Buhlmann
[6] and Zhao and Yu [7] studied the variable selection consistency of the Lassowhen the number of covariates is much larger
than the sample size. Huang, Horowitz andMa [8] studied the bridge estimator in the sparse high dimensional linear model.
Huang, Ma and Zhang [9] studied the asymptotic properties of the high dimensional adaptive Lasso estimator. Fan and Lv
[10] proposed sure independence screening for high-dimensional regression problems. However, all the forgoing results
only are suitable for a specific penalty. There is no general frame that can be suitable for various penalties. As suggested by
Zou and Li [1], the initial value β̃ in the objective function (1.1) is often chosen as the ordinary least squares estimate or
maximum likelihood estimate. However, we cannot obtain these estimates in ultrahigh cases. So it is a challenge to study
the theoretical properties of the one-step estimator in ultrahigh dimensionality.

Huang, Ma and Zhang [9] suggested that the marginal ordinary least squares estimates can be chosen as the initial
values although they are not

√
n-consistent estimator of the parameters. In this paper, we study the one-step estimator

with the initial estimator being marginal ordinary least squares estimates in the ultrahigh linear model. Under certain
appropriate conditions, we show that the one-step estimator is selection consistent. Finite sample performance of the
proposed procedure is assessed by Monte Carlo simulation studies.

The rest of the article is organized as follows. Section 2 states the results on themodel selection under the partial orthog-
onality and some other appropriate conditions. In Section 3, we give some simulation studies to assess the performance of
the proposed method. Section 4 gives some conclusions. Technical proofs are relegated to the Appendix.

2. Model selection consistency

Let the true parameter be β0 = (β01, . . . , β0pn)
T . Denote A = {j : β0j ≠ 0, j = 1, . . . , pn}, which are the indices

of nonzero coefficients in the underlying model. Let Y = (Y1, . . . , Yn)
T ,Xj = (X1j, . . . , Xnj)

T ,X = (X1, . . . ,Xpn) and
ε = (ε1, ε2, . . . , εn)

T . The cardinality of A is denoted by |A| and |A| = kn. Let XA = (Xj, j ∈ A), Σ = n−1XTX and ΣA =

n−1XT
AXA. Let βn∗ = min{|β0j|, j ∈ A} and maxj∈A |β0j| = O(1).

Assumption 1. There exists a constant c0 such that the covariates with zero coefficients and thosewith nonzero coefficients
are weakly correlated, i.e.

n−1/2n
i=1 XijXik

 6 c0, j ∈ A, k ∉ A.

The estimated marginal regression coefficient is

β̃nj =

n
i=1

XijYi

n
i=1

X2
ij

=
1
n
X T
j Y .

Take ηnj = E(β̃nj) = n−1
l∈A(

n
i=1 XijXil)β0l. According to Assumption 1, we have

|ηnj| 6
1

√
n
max
l∈A

|β0l|

l∈A

 1
√
n

n
i=1

XijXil

 =


O(1), j ∈ A,

O


kn
√
n


= o(1), j ∉ A.

For simplicity, we take ηnj = 0 for j ∉ A. It is easy to know

max
16j6pn

|β̃nj − ηnj| = OP(n−k), for k <
1
2
.

It will be used in the proof of Theorem 2.1.
Consider the penalized objective function

Qn(βn) =
1
2n

∥Y − Xβn∥
2
+

pn
i=1

p′

λn(|β̃nj|) · |βnj| (2.1)

β̂n = argmin{Qn(βn)} is the one-step estimator. For any vector x = (x1, x2, . . .)T , denote its sign vector by sgn(x) =

(sgn(x1), sgn(x2), . . .)T , with the convention sgn(0) = 0. Following Zhao and Yu [7], we write β̂n =s β0 if and only if
sgn(β̂n) = sgn(β0).

The following conditions are needed for the selection consistency.

(A1) Suppose that ε
,
i s are i.i.d. random variables, E(εi) = 0,Var(εi) = σ 2, i = 1, . . . , n. Furthermore, suppose their tail

probabilities satisfy P(|εi| > x) 6 K exp(−Cxd) for constants 1 6 d 6 2, C and K .
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