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a b s t r a c t

An algorithm is presented that for a local bilinear form evaluates in linear complexity the
application of the stiffnessmatrixw.r.t. a collection of tensor productmultiscale basis func-
tions, assuming that this collection has a multi-tree structure. It generalizes an algorithm
for sparse-grid index sets [R. Balder, Ch. Zenger, The solution of multidimensional real
Helmholtz equations on sparse grids, SIAM J. Sci. Comput. 17 (3) (1996) 631–646] and it
finds its application in adaptive tensor product approximation methods.
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1. Introduction

For 1 ≤ i ≤ n, let Ψ̌i = {ψ̌i,λ : λ ∈ ∇̌i} and Ψ̂i = {ψ̂i,λ : λ ∈ ∇̂i} be collections of multi-scale functions, e.g., wavelet
bases, multi-level frames, or collections of hierarchical ‘‘hat’’ functions.We assume that the functions from these collections,
which we simply will refer to as being wavelets, satisfy standard locality assumptions meaning that the diameter of the
support of wavelets on level ℓ is of order 2−ℓ. Let ai(·, ·) be a bilinear form that is local meaning that ai(u, v) = 0 whenever
|supp u ∩ supp v| = 0.

We set 9̌ = {ψ̌λ = ⊗
n
i=1 ψ̌λi : λ ∈ ∇̌ :=

n
i=1 ∇̌i} and similarly 9̂, and consider the bilinear form a(·, ·) defined by

a(⊗n
i=1 ui,⊗

n
i=1 vi) =

n
i=1 ai(ui, vi). A typical example being a = ak defined by ai(ui, vi) =


 1

0
ui(x)vi(x)dx, i ≠ k, 1

0
u′
i(x)v

′
i (x)dx, i = k,

in which

case
n

k=1 ak is the bilinear form that results from the variational formulation of Poisson’s problem on (0, 1)n.
The topic of this paper is to apply, for finite 3̌ ⊂ ∇̌, 3̂ ⊂ ∇̂, the ‘‘system matrix’’

a(9̌|3̌, 9̂|3̂) := [a(ψ̌λ, ψ̂µ)]λ∈3̌,µ∈3̂ in O(#3̌+ #3̂) operations. (1.1)

For doing so, there is no real restriction to assume that the collections Ψ̌i and Ψ̂i, and the bilinear forms ai(·, ·) are inde-
pendent of i. Furthermore, inside this introduction we focus on the simplified case where (Ψ =)Ψ̌ = Ψ̂ and (3 =)3̌ = 3̂.
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Already for n = 1, the application of the system matrix in linear complexity cannot be expected for arbitrary Λ ⊂ ∇ ,
because a(Ψ |Λ,Ψ |Λ) is generally not sparse due to interactions betweenwavelets on different levels. Yet, whenΛ is the col-
lection of indices of allwavelets up to some level ℓ, a solution is provided by the application of a transformation T to a single-
scale basisΦℓ on level ℓ. Writing Ψ |

⊤

Λ = Φ⊤

ℓ T , viewing collections of functions as column vectors, we have a(Ψ |Λ,Ψ |Λ) =

T⊤a(Φℓ,Φℓ)T . By the sparsity of a(Φℓ,Φℓ), and under the assumption that each of its entries can be computed in O(1) op-
erations, each of these three matrices on the right-hand side can be applied in O(#Λ) operations, and so can a(Ψ |Λ,Ψ |Λ).

This approach extends to the situation whereΛ is a general tree, which we define as a set such that for any λ ∈ Λ with
|λ| > 0, the support of ψλ is covered by the supports of ψµ for some µ ∈ Λwith |µ| = |λ| − 1. The argument is that for a
tree Λ, there exists a locally finite collection of scaling functions whose span contains spanΨ |Λ, where, thanks to the tree
constraint, the representation of the embedding, being a generalization the aforementioned basis transformation T , can be
performed in O(#Λ) operations.

For n > 1, we have

a(9|3,9|3) = R3(A ⊗ · · · ⊗ A)I3,

where A := a(Ψ ,Ψ ), I3 is the extension operator with zeros of a vector indexed by3 to one indexed by ∇, and R3 denotes
its adjoint being the restriction of a vector to its indices in3.

If 3 is equal to 3̄ := {λ ∈ ∇ : ∥|λ|∥∞ ≤ ℓ}, being the set of all multi-indices λ with, for some level ℓ ∈ N0, ∥|λ|∥∞ :=

maxi |λi| ≤ ℓ, i.e., 3̄ corresponds to a full grid, then, withΛ denoting the set of λ ∈ ∇ with |λ| ≤ ℓ, one has

R3̄(A ⊗ · · · ⊗ A)I3̄ = a(Ψ |Λ,Ψ |Λ)⊗ · · · ⊗ a(Ψ |Λ,Ψ |Λ).

We conclude that the application of a(9|3,9|3) can be evaluated in O(n#3) = O(#3) operations.
Next, we consider 3 to correspond to a sparse grid, i.e., for some ℓ ∈ N0, it is the set of all multi-indices λ with

∥|λ|∥1 :=


i |λi| ≤ ℓ. For simplicity thinking here of n = 2, we write R3(A ⊗ A)I3 = R3(A ⊗ Id)(Id ⊗ A)I3. In view
of the subsequent application of R3(A ⊗ Id), we realize that we need the result of the application of (Id ⊗ A)I3 only on
some finite subset of ∇. The generally smallest subset that can be selected is the corresponding full grid index set 3̄ defined
above, i.e., we have R3(A ⊗ A)I3 = R3(A ⊗ Id)I3̄R3̄(Id ⊗ A)I3. Unfortunately, the applications of both R3(A ⊗ Id)I3̄ and
R3̄(Id⊗A)I3 requireO(#3̄) operations, where, in the standard setting that #{λ ∈ ∇ : |λ| = ℓ} h 2ℓ, one has that #3 h ℓ2ℓ
and #3̄ h 4ℓ.

(Here and in other places, with C h Dwemean that both C . D and C & D, with the first relation meaning that C can be
bounded by some absolute multiple of D, and the second one being defined as D . C .)

To solve the above problem, we apply a key idea by Balder and Zenger in [1] for the hierarchical hat functions, that for
more general functions was applied later in, e.g., [2–4]. We split A into the upper block matrix U = [a(ψλ, ψµ)]|λ|≤|µ| and
the strictly lower block matrix L = [a(ψλ, ψµ)]|λ|>|µ|. By definition of U, L, and3, we have

(U ⊗ Id)I3 = I3R3(U ⊗ Id)I3, R3(L ⊗ Id) = R3(L ⊗ Id)I3R3,

from which we infer that

R3(A ⊗ A)I3 = R3((U + L)⊗ A)I3
= R3(L ⊗ Id)(Id ⊗ A)I3 + R3(U ⊗ Id)(Id ⊗ A)I3
= R3(L ⊗ Id)(Id ⊗ A)I3 + R3(Id ⊗ A)(U ⊗ Id)I3
= R3(L ⊗ Id)I3 R3(Id ⊗ A)I3 + R3(Id ⊗ A)I3 R3(U ⊗ Id)I3.

Since 3, ‘‘frozen’’ in either of its coordinates, is a collection of indices of all wavelets up to some level, R3(Id ⊗ A)I3, and
similarly, R3(L ⊗ Id)I3 and R3(U ⊗ Id)I3, can be applied in O(#3) operations, and so can a(9|3,9|3).

Remark 1.1. Since, for general n > 1, in the above scheme two recursive calls for Id ⊗ A ⊗ · · · ⊗ A have to be made, one
verifies that its complexity isO(2n#3). So in high dimensions, one should avoidmultiplicationswith R3(A1⊗· · ·⊗An)I3 for
more than one or a few Ai not being truly sparse. For, say, the Poisson problem, this can be realized by applying orthogonal
wavelets (cf. [5,6]) or prewavelets (cf. [7,8]). This issue, however, is outside the scope of the current paper, andwewill ignore
the dependency of constants on the space dimension n.

The goal of this paper is to generalize the algorithm for the multiplication with a(9̌|3̌, 9̂|3̂) from [1] to the case of 3̌
and 3̂ being multi-trees, and to prove that it requires only O(#3̌ + #3̂) operations. We define a multi-index set 3 to be a
multi-tree when ‘‘frozen’’ in any n − 1 coordinates, it is a tree in the remaining coordinate.

The application of this result lies in adaptive tensor product approximation methods, as adaptive sparse grid methods
([9] + references cited there), or adaptive tensor product wavelet Galerkin methods (e.g. [10]). It seems that multi-trees are
the most general sets for which (1.1) is realizable (unless, by a special choice of the wavelets, the bi-infinite matrix a(9̌, 9̂)
as a whole is sparse, cf. [11]).

For 9̌ = 9̂ being a hierarchical basis and 3̌ = 3̂, similar results, although described more informally, can be found
in [12,8,13]. For a hierarchical basis, our condition of 3̌ = 3̂ being a multi-tree is equal to the condition on this index set
imposed in these references. The discussion in [8, Section 3.1.3] about a prewavelet basis learns that the generalization from
the hierarchical basis to a general multi-level collection is not trivial.
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