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1. Introduction

In general form, a mixed Volterra-Fredholm integral equation can be written as

f(s, t) =g, t)+f f UG, t,x,y, f(x,y))dydx, (1)
0 2

where f (s, t) is an unknown scalar valued function defined on
D=1[0T] x 2

and £2 is a closed subset of R", n = 1, 2, 3. The function g(s, t) and U(s, t, x, y, f) are given functions defined on D and
S={G,t,xy,f):0<x<s<T,t,ye 2},

respectively [1]. It is obvious that a finite interval [0, T] can be transformed to [—1, 1] and without loss of generality, we
suppose that £2 = [0, 1]. Moreover, we assume U(s, t, x, y, f) = k(s, t, x, ¥)[f (s, t)]?, p is a positive integer. Various prob-
lems in physics, mechanics and biology arise from a nonlinear mixed type Volterra-Fredholm integral equation [2-4]. In
fact, few numerical methods have been known for approximating the solution of Eq. (1). Kauthen [5,6] presented a contin-
uous time collocation method for the linear case of Eq. (1) and analyzed the discrete convergence properties. Hacia used a
projection method for solving the linear case of Eq. (1), [7,8]. Hadizadeh et al. in [9] obtained a numerical solution of linear
Volterra-Fredholm integral equations of mixed type using the bivariate Chebyshev collocation approach. Also Banifatemi
et al. [10-13] introduced a method for solving Eq. (1) using two-dimensional Legendre wavelets. RBFs were introduced
in [14] and they form a primary tool for multivariate interpolation. Hardy [15] showed that MQs are related to a consistent
solution of the biharmonic potential problem and thus it has a physical foundation. Buhmann and Micchelli [16] and Chui
et al. [17] have shown that RBFs are related to prewavelets. Also Alipanah and Dehghan [18], used RBFs for the solution
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of a nonlinear integral equation in the one-dimensional case. In this paper, we are concerned with the solution of a class
of mixed nonlinear Volterra-Fredholm two-dimensional integral equations using MQs. Also we approximate its associated
integrals by the Legendre-Gauss-Lobatto points and weights. Thus, we organized this paper as follows. In Section 2, we de-
scribe the two-dimensional MQs interpolation. In Section 3, we introduce the Legendre-Gauss-Lobatto nodes and weights.
In Section 4, we implement the problem with the proposed method. In Section 5, we will discuss a convergence analysis
for a class of mixed two-dimensional nonlinear Volterra-Fredholm integral equations. Finally, we illustrate some numerical
examples to show the efficiency and accuracy of this method. The conclusions are discussed in Section 7.

2. Two-dimensional MQs interpolation

Let ¢ (r) be MQ functions and we approximate f (x, y) with interpolation by the function ¢ (r) i.e.

N M

f(xv y) x~ CU(Z)U(X».V) = CT‘(/I(Xa y)v (2)
i=0 j=0

where
bij = ¢i(x,y) = ¢(ll(x, ) — (i, yID = \/Il(x, ¥) — @i ypl? + ¢, (3)
W(X,y) - [¢007 ¢107 e ¢N0; ¢01a ¢Hs e 7¢N‘1; cees ¢0M7 ¢‘1Ma ey ¢NM]T5 (4)
and
"= [coos €10 - -+ CNO3 CO15 €115 -+ -5 CNT5 + -+ 3 COMs CIMs - - - » CNM]T~ (5)

Also (x;,y;),i=0,...,N,j=0,..., M are the Legendre-Gauss-Lobatto nodes [19].

3. Legendre-Gauss-Lobatto nodes and weights

Let #y[—1, 1] denote the space of algebraic polynomials of degree < N, by
2
(pi, pj) = ﬁ‘su
Here (-, -) represents the usual L>[—1, 1] inner productand {pi}i>o are the well-known Legendre polynomials of order i which
are orthogonal with respect to the weight function w(x) = 1 on the interval [—1, 1] and satisfy the following formula

po(x) =1, pix) =1,

®) 2i+1 ® i ). i=123

1) = —— )xpi® — ——pi(®, i=1,2,3,....

Di+1 i1 Di i+1p:1

Next, we let {x;}}'; as
(1= x)p(x;) =0, N
—]:X0<X1<X2<~-'<XN:1,

where p(x) is a derivative of p(x). No explicit formula for the nodes {xj}N ~1 is known. However, they are computed

. . . . =1
numerically using the existing subroutines.
Now, we assume f € Foy_1[—1, 1], we have

1 N
[ swax= Y wreo) 7)
—1 =0
where wj are the Legendre-Gauss-Lobatto weights [20,21].

4. Solution of a class of mixed nonlinear Volterra-Fredholm two-dimensional IEs using MQs

Consider the mixed nonlinear Volterra-Fredholm two-dimensional integral equations given in Eq. (1). In order to use
MQs, we first perform the expansion of two variables functions f (s, t) in Eq. (1), using Eq. (4), we get

s 1
CTy (s, £) = g(s, t)—i—/ / UGs, t,x,y, CTr (x, y))dydx. (8)
0 0
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