Numerical solution of a class of mixed two-dimensional nonlinear Volterra-Fredholm integral equations using multiquadric radial basis functions

H. Almasieh*, J. Nazari Meleh
Department of Mathematics, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran

A R TICLE INFO

Article history:

Received 26 February 2013

Keywords:

Radial basis function
Multiquadrics
Mixed nonlinear Volterra-Fredholm integral equations
Two-dimensional integral equations

Abstract

An efficient numerical method is proposed for solving the mixed nonlinear VolterraFredholm two-dimensional integral equations (IEs), using two-dimensional radial basis functions (RBFs). This method is based on interpolation by radial basis functions including multiquadrics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence analysis. Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In general form, a mixed Volterra-Fredholm integral equation can be written as

$$
\begin{equation*}
f(s, t)=g(s, t)+\int_{0}^{s} \int_{\Omega} U(s, t, x, y, f(x, y)) d y d x \tag{1}
\end{equation*}
$$

where $f(s, t)$ is an unknown scalar valued function defined on

$$
D=[0, T] \times \Omega
$$

and Ω is a closed subset of $\mathbb{R}^{n}, n=1,2,3$. The function $g(s, t)$ and $U(s, t, x, y, f)$ are given functions defined on D and

$$
S=\{(s, t, x, y, f): 0 \leq x \leq s \leq T, t, y \in \Omega\}
$$

respectively [1]. It is obvious that a finite interval [$0, T$] can be transformed to [$-1,1$] and without loss of generality, we suppose that $\Omega=[0,1]$. Moreover, we assume $U(s, t, x, y, f)=k(s, t, x, y)[f(s, t)]^{p}, p$ is a positive integer. Various problems in physics, mechanics and biology arise from a nonlinear mixed type Volterra-Fredholm integral equation [2-4]. In fact, few numerical methods have been known for approximating the solution of Eq. (1). Kauthen [5,6] presented a continuous time collocation method for the linear case of Eq. (1) and analyzed the discrete convergence properties. Hacia used a projection method for solving the linear case of Eq. (1), [7,8]. Hadizadeh et al. in [9] obtained a numerical solution of linear Volterra-Fredholm integral equations of mixed type using the bivariate Chebyshev collocation approach. Also Banifatemi et al. [10-13] introduced a method for solving Eq. (1) using two-dimensional Legendre wavelets. RBFs were introduced in [14] and they form a primary tool for multivariate interpolation. Hardy [15] showed that MQs are related to a consistent solution of the biharmonic potential problem and thus it has a physical foundation. Buhmann and Micchelli [16] and Chui et al. [17] have shown that RBFs are related to prewavelets. Also Alipanah and Dehghan [18], used RBFs for the solution

[^0]of a nonlinear integral equation in the one-dimensional case. In this paper, we are concerned with the solution of a class of mixed nonlinear Volterra-Fredholm two-dimensional integral equations using MQs. Also we approximate its associated integrals by the Legendre-Gauss-Lobatto points and weights. Thus, we organized this paper as follows. In Section 2, we describe the two-dimensional MQs interpolation. In Section 3, we introduce the Legendre-Gauss-Lobatto nodes and weights. In Section 4, we implement the problem with the proposed method. In Section 5, we will discuss a convergence analysis for a class of mixed two-dimensional nonlinear Volterra-Fredholm integral equations. Finally, we illustrate some numerical examples to show the efficiency and accuracy of this method. The conclusions are discussed in Section 7.

2. Two-dimensional MQs interpolation

Let $\phi(r)$ be MQ functions and we approximate $f(x, y)$ with interpolation by the function $\phi(r)$ i.e.

$$
\begin{equation*}
f(x, y) \simeq \sum_{i=0}^{N} \sum_{j=0}^{M} c_{i j} \phi_{i j}(x, y)=C^{T} \psi(x, y) \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi_{i j}=\phi_{i j}(x, y)=\phi\left(\left\|(x, y)-\left(x_{i}, y_{j}\right)\right\|\right)=\sqrt{\left\|(x, y)-\left(x_{i}, y_{j}\right)\right\|^{2}+c^{2}}, \tag{3}\\
& \psi(x, y)=\left[\phi_{00}, \phi_{10}, \ldots, \phi_{N 0} ; \phi_{01}, \phi_{11}, \ldots, \phi_{N 1} ; \ldots ; \phi_{0 M}, \phi_{1 M}, \ldots, \phi_{N M}\right]^{T}, \tag{4}\\
& \text { and } \\
& C^{T}=\left[c_{00}, c_{10}, \ldots, c_{N 0} ; c_{01}, c_{11}, \ldots, c_{N 1} ; \ldots ; c_{0 M}, c_{1 M}, \ldots, c_{N M}\right]^{T} . \tag{5}
\end{align*}
$$

Also $\left(x_{i}, y_{j}\right), i=0, \ldots, N, j=0, \ldots, M$ are the Legendre-Gauss-Lobatto nodes [19].

3. Legendre-Gauss-Lobatto nodes and weights

Let $\mathscr{H}_{N}[-1,1]$ denote the space of algebraic polynomials of degree $\leq N$, by

$$
\left\langle p_{i}, p_{j}\right\rangle=\frac{2}{2 j+1} \delta_{i j}
$$

Here $\langle\cdot, \cdot\rangle$ represents the usual $L^{2}[-1,1]$ inner product and $\left\{p_{i}\right\}_{i \geq 0}$ are the well-known Legendre polynomials of order i which are orthogonal with respect to the weight function $w(x)=1$ on the interval $[-1,1]$ and satisfy the following formula

$$
\begin{aligned}
& p_{0}(x)=1, \quad p_{1}(x)=1, \\
& p_{i+1}(x)=\left(\frac{2 i+1}{i+1}\right) x p_{i}(x)-\frac{i}{i+1} p_{i-1}(x), \quad i=1,2,3, \ldots
\end{aligned}
$$

Next, we let $\left\{x_{j}\right\}_{j=0}^{N}$ as

$$
\begin{align*}
& \left(1-x_{j}^{2}\right) \dot{p}\left(x_{j}\right)=0 \tag{6}\\
& -1=x_{0}<x_{1}<x_{2}<\cdots<x_{N}=1
\end{align*}
$$

where $\dot{p}(x)$ is a derivative of $p(x)$. No explicit formula for the nodes $\left\{x_{j}\right\}_{j=1}^{N-1}$ is known. However, they are computed numerically using the existing subroutines.
Now, we assume $f \in \mathscr{H}_{2 N-1}[-1,1]$, we have

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \simeq \sum_{j=0}^{N} w_{j} f\left(x_{j}\right) \tag{7}
\end{equation*}
$$

where w_{j} are the Legendre-Gauss-Lobatto weights $[20,21]$.

4. Solution of a class of mixed nonlinear Volterra-Fredholm two-dimensional IEs using MQs

Consider the mixed nonlinear Volterra-Fredholm two-dimensional integral equations given in Eq. (1). In order to use MQs, we first perform the expansion of two variables functions $f(s, t)$ in Eq. (1), using Eq. (4), we get

$$
\begin{equation*}
C^{T} \psi(s, t)=g(s, t)+\int_{0}^{s} \int_{0}^{1} U\left(s, t, x, y, C^{T} \psi(x, y)\right) d y d x \tag{8}
\end{equation*}
$$

https://daneshyari.com/en/article/4639037

Download Persian Version:
https://daneshyari.com/article/4639037

Daneshyari.com

[^0]: * Corresponding author. Tel.: +98 9131171225.

 E-mail addresses: halmasieh@yahoo.co.uk (H. Almasieh), jinoosnazari@yahoo.com (J. Nazari Meleh).

