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a b s t r a c t

A mathematical procedure for finding a closed-form double optimal solution (DOS) of an
n-dimensional linear equations system Bx = b is developed, which expresses the solution
in an m-dimensional affine Krylov subspace with undetermined coefficients, and two
optimization techniques are used to determine these coefficients in closed-form. To find
the DOS, it is very time saving without the need of any iteration; in practice, we only need
to invert an m × m matrix one time, where m ≪ n. The DOS is not exactly equal to the
exact solution, but it can provide an acceptable approximate solution of linear equations
system, whose applicable range is identified. Some properties are analyzed that the DOS is
an exact solution of a projected linear system of Bx = b onto the affine Krylov subspace.
The tests for large scale problems demonstrate the efficiency of DOS on non-sparse linear
systems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we derive a closed-form double optimal solution in an affine Krylov subspace for the following linear
equations system:

Bx = b, (1)

where x ∈ Rn is an unknown vector, to be determined from a given non-singular coefficient matrix B ∈ Rn×n, and the input
b ∈ Rn. In the text books [1–4] there are many techniques to find the solution of Eq. (1).

Around Eq. (1), there are several solution methods originated from the idea of minimization. For the positive definite
linear system, solving Eq. (1) by the steepest descent method is equivalent to solve the following minimization problem
[5,6]:

min
x∈Rn

ϕ(x) = min
x∈Rn


1
2
xTBx − bTx


, (2)

where B is a positive definite matrix.
Given an initial guess x0, from Eq. (1) we have an initial residual

r0 = b − Bx0. (3)

Upon letting

z = x − x0. (4)
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Eq. (1) is equivalent to

Bz = r0, (5)

which can be used to search a descent direction z after giving an initial residual r0. Liu [7,8] has proposed byminimizing the
following merit function:

min

a0 =

∥r0∥2
∥Bz∥2

[r0 · (Bz)]2


, (6)

to obtain a fast descent direction z in the iterative solution of Eq. (1).
In the numerical solution of linear equations system the Krylov subspace method is one of the most important classes

of numerical methods [9–13]. The iterative algorithms that are applied to solve large scale linear systems are mostly the
preconditioned Krylov subspacemethods [14]. Instead of the development of numericalmethods, wewill employ the Krylov
subspace method to derive a closed-form double optimal solution of Eq. (1) when B is a non-sparse matrix.

Suppose that we have anm-dimensional Krylov subspace generated by the coefficient matrix B from the right-hand side
vector r0 in Eq. (5):

Km := Span{r0, Br0, . . . , Bm−1r0}. (7)

Let Lm = BKm. The idea of GMRES is using the Galerkin method to search the solution z ∈ Km, such that the residual
b − Bx = r0 − Bz is perpendicular to Lm [15]. It can be shown that the solution z ∈ Km minimizes the residual [16]:

min{∥r0 − Bz∥2
= ∥b − Bx∥2

}. (8)

To the best knowledge of the author, there exists no theory and no numerical method to find the solution of Eq. (1),
simultaneously based on the twominimizations in Eqs. (6) and (8). The remaining parts of this paper are arranged as follows.
In Section 2 we start from anm-dimensional Krylov subspace to express the solution in an affinem + 1-dimensional linear
subspace with some coefficients to be optimized in Section 3, where twomerit functions are proposed for the optimizations
of the expansion coefficients. More importantly, we can derive a closed-form double optimal solution (DOS) of Eq. (1). Some
important properties of DOS are identified in this section. The procedures to find the DOS are sketched in Section 4. The
examples of linear problems, including large scale problems, solved by the method of DOS are given in Section 5 to display
some advantages of the present methodology to find approximate solution of Eq. (1). Finally, the conclusions are drawn in
Section 6.

2. An affine Krylov subspace method

For the linear equations system (1), by using the Cayley–Hamilton theorem we can expand B−1 by

B−1
=

a1
a0

In +
a2
a0

B +
a3
a0

B2
+ · · · +

an−1

a0
Bn−2

+
1
a0

Bn−1, (9)

and hence, the solution x is given by

x = B−1b =


a1
a0

In +
a2
a0

B +
a3
a0

B2
+ · · · +

1
a0

Bn−1

b, (10)

where the coefficients a0, a1, . . . , an−1 are appeared in the characteristic equation for B: λn
+an−1λ

n−1
+· · ·+a2λ2

+a1λ−

a0 = 0. Here, we assume that a0 = − det(B) ≠ 0. In practice, the above formula to find the solution of x is quite difficult to
be realized, since the coefficients aj, j = 0, 1, . . . , n − 1 are hard to find, and the computations of the higher-order powers
of B are expansive, when n is a quite large positive integer.

However, motivated by Eq. (10) we can suppose that the solution x can be expressed by

x = α0b +

m
k=1

αkuk, (11)

which is to be determined as an optimal combination of b and the m-vector uk, k = 1, . . . ,m in an m + 1-dimensional
linear subspace, when the coefficients αk and α0 are optimized in Section 3. For finding the solution x in a much smaller
subspace we suppose thatm ≪ n.

Now we describe how to set up the m-vector uk, k = 1, . . . ,m by the Krylov subspace method. Suppose that we have
anm-dimensional Krylov subspace generated by the coefficient matrix B from the right-hand side vector b in Eq. (1):

Km := Span{Bb, . . . , Bmb}. (12)

Then theArnoldi process is used to normalize and orthogonalize theKrylov vectorsBjb, j = 1, . . . ,m, such that the resultant
vectors ui, i = 1, . . . ,m satisfy ui · uj = δij, i, j = 1, . . . ,m, where δij is the Kronecker delta symbol.
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