
Journal of Computational and Applied Mathematics 260 (2014) 494–508

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Spectral multiscale finite element for nonlinear flows in
highly heterogeneous media: A reduced basis approach
J. Galvis a,∗, S. Ki Kang b

a Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá D.C., Colombia
b Samsung Fire & Marine Insurance Co., Seoul, Republic of Korea

a r t i c l e i n f o

Article history:
Received 27 February 2013
Received in revised form 9 October 2013

Keywords:
Nonlinear permeability
Highly heterogeneous media
High contrast media
Reduced basis
Multiscale methods

a b s t r a c t

In this paper, we study multiscale finite element methods for Richards’ equation, a
mathematical model to describe fluid flow in unsaturated and highly heterogeneous
porous media. In order to compute solutions of Richard’s equation, one can use numerical
homogenization or multiscale methods that use two-grid procedures: a fine-grid that
resolves the heterogeneities and a coarse grid where computations are done. The idea is
that the coarse solution procedure captures the fine-grid variations of the solution. Since
the media has complicated variations inside of coarse-grid blocks, a large error can be
generated during the computation of coarse-scale solutions. In this paper, we consider the
case of highly varying coefficients where variations can occur within coarse regions we
develop accurate multiscale methods. In order to obtain accurate coarse-scale numerical
solutions for Richards’ equation, we design an effective multiscale method that is able to
capture the multiscale features of the solution without discarding the small scale details.
With a careful choice of the coarse basis functions formultiscale finite elementmethods,we
can significantly reduce errors. We use coarse basis functions construction that combines
local spectral problems and a Reduced Basis (RB) approach. This is an extension to the
nonlinear case of the method proposed by Efendiev et al. (2012) that combines spectral
constructions of coarse spaces with RB procedures to efficiently solve linear parameter
dependent flow problems. The construction of coarse spaces begins with an initial choice
of multiscale basis functions supported in coarse regions. These basis functions are
complemented using a local, parameter dependent, weighted eigenvalue problem. The
obtainedbasis functions can capture the small scale features of the solutionwithin a coarse-
grid block and give us an accurate coarse-scale solution. The RB procedures are used to
efficiently solve for all possible flow scenarios encountered in every single iteration of a
fixed point iterative method. We present representative numerical experiments.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Soil water transport has considerable influence on the heat and solute transport in soils, water supply to plants, andmany
other important effects on the environment. Therefore, simulations of soil water flow have many applications in hydrology,
agronomy, and other soil related fields. The percolation of water in the soil varies greatly according to the soil structure
which has many variations depending on the location or environmental conditions. The difficulty in analyzing groundwater
transport is causedmainly by the heterogeneity of subsurface formationswhichmay spanmany scales. Thesemultiple scales
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dominate simulation costs and therefore we need to construct solution techniques which resolve all the small-scale effects
into few larger scales.

The basic equation in the theory of groundwater flow through unsaturated porous media is Richards’ equation [1],

Dtθ(u)− div(κ(x, u)∇(u + x3)) = f , x ∈ Ω, (1)

which describes the infiltration ofwater into a porousmediawhose pore space is filledwith air andwater. Here θ(u) denotes
the volumetric water content, the function u represents pressure head, the nonlinear coefficient κ(x, u) ≥ k0 > 0 is the
relative hydraulic conductivity and k0 is a constant. We assume that appropriate initial and boundary data are provided.
We also assume that the moisture water content θ(u) and the conductivity κ(x, u) have functional forms depending on the
pressure head u. Several functional formswhich are formulated by experimental and observational data have been suggested
by hydrologists and soil scientists. In this paper, we use three well-knownmodels, namely, Haverkamp, van Genuchten, and
Exponential models. See [2] and references therein.

In our research, we consider Richards’ equation in the complex heterogeneous porous media which is characterized by
the large variations of the conductivity, κ(x, u). We consider the steady-state Richards’ equation

− div(κ(x, u)∇(u + x3)) = f , x ∈ Ω. (2)

The high contrast defined as the ratio between highest and lowest conductivity values brings a small scale into the problem.
The scale difference makes the problem computationally expensive and often it is impossible to solve the small scale
properties directly. Several approaches are proposed to solve such problems [3–6].

In this paper, we discussmultiscale finite elementmethod (MsFEM) and its applications to the computations of Richards’
equation. The main idea of MsFEM is to incorporate the small-scale information into finite element basis functions and
capture their effect on the large scale via finite element computations. Originally, MsFEM is proposed for linear equations.
The pre-constructed multiscale base functions interpolate a coarse-scale function which is defined at the nodal values of
the coarse grid to the underlying fine grid. This idea can be generalized to nonlinear problems. In nonlinear problems, it is
considered a multiscale map instead of multiscale base functions and it maps from the coarse grid space to the underlying
fine grid space, see [3]. This multiscale map is constructed using the solutions of the local problems and provided us with
the interpolation of the coarse-scale function, defined at the nodal values of the coarse grid to the underlying fine grid. Once
the multiscale mapping is defined, we formulate the global finite element formulation of the problem.

To obtain accurate coarse-scale approximations of the solution, developing an appropriate multiscale basis functions
with suitable boundary conditions is a major issue. These basis functions need to be accurate in the sense that they need
to represent important features of the solution within a coarse-grid block. Several approaches to get accurate MsFEM bases
were studied [7,3,8,9].

In this paper, we use local spectral basis functions which where introduced [10]. The construction of coarse spaces starts
with an initial choice of multiscale basis functions that are supported in coarse regions sharing a common node. These basis
functions are complemented using weighted local spectral problems that are defined in coarse blocks. The weight function
in the local spectral problem is computed based on the initial choice of multiscale basis functions. In our research, we design
coarse spaces based on local spectral problemsusingmultiscale functions andwe show that these coarse spaces give accurate
solutions for the considered Richards’ equation in heterogeneous media. By combining small-scale localizable features of
the solution into initial multiscale basis functions, we show that one can achieve small dimensional coarse spaces without
sacrificing the convergence properties.

Iterative procedures to solve Eq. (2) can be regarded as a parameter-dependent elliptic equation. See Section 3 for details.
In this case the coefficient κ depends not only on the spatial coordinates but also on a parameter that is determined by
previous approximation of the solution. Each value of the parameter gives a realization of the conductivity field. Recall that
we assume that the coefficients have both small scales and high contrast. To construct local basis functions, we first find
initial multiscale basis functions and construct local spectral problems for complementing the initial coarse space.

However, for nonlinear (and parameter dependent) problems, solving the local eigenvalue problem in each iteration (or
for each parameter, respectively) can be expensive, especially in the cases of large size coarse blocks. Therefore we need
special techniques to compute basis functions inexpensively. Here, we apply Reduced Basis (RB) approach.

The main idea of the RB method is to represent the solution of parametrized PDEs by a small set of basis functions
which is referred as reduced basis. The reduced basis is constructed from a larger set of snapshots which are typically
pre-computed solutions of the underlying PDE at selected parameter points. The reduced basis approach is thus adapted
to the local parameter dependence of the differential operator. As a consequence, the size of the original problem can be
significantly reduced since only a small number of basis functions is typically required.

The overall resultingmultiscale procedure (that combinesMsFEMandRB) can be framedwithin theGeneralizeMultiscale
Finite Element Method (GMsFEM) recently developed in [11]. The GMsFEM method is a very general multiscale procedure
that divide the computations in offline (or pre-processing) procedures and online inexpensive construction of basis functions
used to approximate global solutions. In the GMsFEM offline computations some special spectral selection procedure is
implemented to identify important basis. In our approach, in order to select important basis (and important information) in
the off-line stage, we use RB procedures as described above. Then, in the online stage, we compute basis functions using the
obtained RB-basis. We also mention that, despite of the fact that we construction basis locally, we compute coarse solutions
using conforming Galerkin projections on the resulting (H1-conforming) coarse-scale finite element spaces. A detailed
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