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a b s t r a c t

In this paper, we propose a proximal parallel decomposition algorithm for solving the
optimization problems where the objective function is the sum of m separable functions
(i.e., they have no crossed variables), and the constraint set is the intersection of Cartesian
products of some simple sets and a linear manifold. The m subproblems are solved
simultaneously per iterations, which are sum of the decomposed subproblems of the
augmented Lagrange function and a quadratic term. Hence our algorithm is named as the
‘proximal parallel splitting method’. We prove the global convergence of the proposed
algorithm under some mild conditions that the underlying functions are convex and the
solution set is nonempty. To make the subproblems easier, some linearized versions of the
proposed algorithm are also presented, together with their global convergence analysis.
Finally, some preliminary numerical results are reported to support the efficiency of the
new algorithms.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For the index i = 1, 2, . . . ,m, let Xi ⊆ Rni be closed convex sets, θi : Rni → R be closed proper convex functions (not
necessarily smooth), and Ai ∈ Rl×ni . In this paper, we consider the following optimization problem

min


m
i=1

θi(xi)

 m
i=1

Aixi = b, xi ∈ Xi, i = 1, 2, . . . ,m


, (1.1)

where b ∈ Rl is a given vector. This type of problems are often encountered in realities, e.g., convex programming,
variational analysis and PDE, etc. From the numerical point of view, this problem has very special structure: its objective
function has a separable structure, i.e., the objective function is the sum ofm functions and each function θi only depends on
its own variable xi. This special structure provides us the opportunity of splitting it intom smaller subproblems and solve it
via solving these smaller subproblems.

Traditional studies of splitting algorithms focus on the case with m = 2. For this special case, Gabay and Mercier
[1,2] proposed the following alternating direction method (ADM), which generates the iterative sequence via the following
recursion

xk+1
1 = argmin


LH(x1, xk2, λ

k) | x1 ∈ X1

,

xk+1
2 = argmin


LH(xk+1

1 , x2, λk) | x2 ∈ X2

,

λk+1
= λk − H


A1xk+1

1 + A2xk+1
2 − b


,

(1.2)
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where λ ∈ Rl is the Lagrangian multiplier associated to the linear constraint, H ∈ Rl×l is a positive definite matrix and

LH(x1, . . . , xm, λ) :=

m
i=1

θi(xi)− λ⊤


m
i=1

Aixi − b


+

1
2

 m
i=1

Aixi − b


2

H

(1.3)

is the augmented Lagrange function of the optimization problem (1.1). In the classical ADM, the matrix H is specified as
H = βI , where β is a positive constant and I is the identity matrix. Due to its significant efficiency in tracking problem (1.1),
ADMhas receivedmuch attention from various areas, and a lot of variants are developed in the past decades, see, e.g., [3–13].
Recently, ADM finds a great number of applications in matrix optimization [14–16], image restoration [17,18], compressive
sensing [19] and statistical learning [20–22].

However, in many cases, one often encounters the problem (1.1) with m ≥ 3. For example, the robust principal
component analysis model [23], the total-variation based image restoration problem [18], the superresolution image
reconstruction problem [24,25], themultistage stochastic programming problem [26], and the deblurring Poissonian images
problem [27]. For solving this general case, one naturally considers to extend the ADM directly to the following recursion:

xk+1
i = argmin


LH(xk+1

1 , . . . , xk+1
i−1 , xi, x

k
i+1, . . . , x

k
m, λ

k) | xi ∈ Xi

, i = 1, . . . ,m,

λk+1
= λk − H


m
i=1

Aixk+1
i − b


.

(1.4)

Unfortunately, till now there is no convergence proof for the iterative sequence generated by (1.4). Compared to the special
case withm = 2, the study on the general case withm ≥ 3 is on its infancy. He [28] proposed a parallel splitting algorithm
for the casem = 3, where the main task per iteration is to solve the following subproblems (note that the method in [28] is
presented under variational inequality framework; here we rewrite it for model (1.1) withm = 3):

x̃k1 = argmin

LH(x1, xk2, x

k
3, λ

k) | x1 ∈ X1

,

x̃k2 = argmin

LH(xk1, x2, x

k
3, λ

k) | x2 ∈ X2

,

x̃k3 = argmin

LH(xk1, x

k
2, x3, λ

k) | x3 ∈ X3

.

(1.5)

With the help of a simple correction step, it was proved that the generated sequence globally converges to a solution of (1.1).
Most recently, Han et al. [29] proposed a new splitting method where the main subproblems are similar to those in (1.5),
but with a different correction step in generating the new iterates.

The success of this type of splittingmethod relies on the efficient solvability of the subproblems.While recent applications
of classical ADM type methods achieved great success due to the simplicity or closed-form solutions of the subproblems,
in most cases the subproblems (1.5) may be time-consuming. The purpose of this paper is to design new parallel splitting
algorithmswith easier subproblems for solving convex programswith separable structure.We consider two strategies: first,
we add a quadratic proximal term ri

2 ∥xi −xki ∥
2 with a constant ri ≥ 0 to the i-th subproblem in the splitting algorithms, then

a strongly convex subproblem, which is easier to solve than the original subproblems, is obtained. Second, three linearized
versions on the nonlinear terms in the subproblems are presented, i.e., we linearize the following two types of nonlinear
terms:

θi(xi) or/and


j≠i

Ajxkj + Aixi − b


2

H

.

In many cases, the linearized subproblems possess closed-form solutions, which makes the iteration very simple, and the
resulting algorithms may be very suitable to solve large-scale problems arising from real applications.

This paper is organized as follows. Some necessary preliminaries are provided in Section 2. By exploiting the separability
of the models, in Section 3, we present a new proximal parallel splitting method. The global convergence of the present
method is proved in Section 4. Based on the linearization techniques, Section 5 presents three different linearized schemes
of the proposed proximal parallel splitting method. To investigate the numerical performance of our new algorithms, we
implement the proposed algorithms for solving separable quadratic programs, and report some preliminary numerical
results in Section 6. Finally, we complete this paper with some concluding remarks in Section 7.

2. Preliminaries

In this section, we summarize some basic concepts and their properties which will be useful for the subsequent sections.

Definition 2.1. An operator f : Ω → Rn is said to be

(a) monotone if

(u − v)⊤(f (u)− f (v)) ≥ 0, ∀u, v ∈ Ω;
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