FLSEVIER

Contents lists available at ScienceDirect

### Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

# Some results on a starlike log-harmonic mapping of order alpha



#### Melike Aydoğan\*

Department of Mathematics, Isik University, İstanbul, Turkey

#### ARTICLE INFO

Article history: Received 2 June 2013

MSC: 30C55 30C45

*Keywords:* Log-harmonic mappings Starlike function Distortion theorem

#### ABSTRACT

Let H(D) be the linear space of all analytic functions defined on the open unit disc  $D = z \in C$  : |z| < 1. A sense preserving log-harmonic mapping is the solution of the non-linear elliptic partial differential equation

 $f_z = w(z)f_z(f_z/f)$ 

where  $w(z) \in H(D)$  is the second dilatation of f such that |w(z)| < 1 for all  $z \in D$ . A sense preserving log-harmonic mapping is a solution of the non-linear elliptic partial differential equation

$$\frac{f_{\overline{z}}}{\overline{f}} = w(z) \cdot \frac{f_z}{f} \tag{0.1}$$

where w(z) the second dilatation of f and  $w(z) \in H(D)$ , |w(z)| < 1 for every  $z \in D$ . It has been shown that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$f(z) = h(z)\overline{g(z)} \tag{0.2}$$

where h(z) and g(z) are analytic in D with the normalization  $h(0) \neq 0$ , g(0) = 1. On the other hand if f vanishes at z = 0, but it is not identically zero, then f admits the following representation

$$f(z) = z \cdot z^{2\beta} h(z) \overline{g(z)}$$
(0.3)

where Re  $\beta > -\frac{1}{2}$ , h(z) and g(z) are analytic in the open disc *D* with the normalization  $h(0) \neq 0$ , g(0) = 1 (Abdulhadi and Bshouty, 1988) [2], (Abdulhadi and Hengartner, 1996) [3].

In the present paper, we will give the extent of the idea, which was introduced by Abdulhadi and Bshouty (1988) [2]. One of the interesting applications of this extent idea is an investigation of the subclass of log-harmonic mappings for starlike log-harmonic mappings of order alpha.

© 2013 Published by Elsevier B.V.

#### 1. Introduction

Let  $\Omega$  be the family of functions  $\phi(z)$  which are regular in  $\mathbb{D}$  and satisfy the conditions  $\phi(0) = 0$ ,  $|\phi(z)| < 1$  for all  $z \in \mathbb{D}$ . Next, denote by  $\mathcal{P}(A, B)$  the family of functions

$$p(z) = 1 + p_1 z + p_2 z^2 + \cdots$$

\* Tel.: +90 5323347013. E-mail address: melike.aydogan@isikun.edu.tr.

<sup>0377-0427/\$ –</sup> see front matter  $\hfill \ensuremath{\mathbb{C}}$  2013 Published by Elsevier B.V. http://dx.doi.org/10.1016/j.cam.2013.07.008

regular in  $\mathbb{D}$ , such that p(z) is in  $\mathcal{P}(A, B)$  if and only if

$$p(z) = \frac{1 + A\phi(z)}{1 + B\phi(z)}, \quad -1 \le B < A \le 1$$
(1.1)

for some function  $\phi(z) \in \Omega$  and for every  $z \in \mathbb{D}$ . Therefore we have p(0) = 1, Re  $p(z) > \frac{1-A}{1-B} > 0$  whenever  $p(z) \in \mathcal{P}(A, B)$ . Moreover, let  $\delta^*(A, B)$  denote the family of functions

 $s(z) = z + a_2 z^2 + \cdots$ 

regular in  $\mathbb{D}$ , and such that s(z) is in  $\mathscr{S}^*$  if and only if

$$\operatorname{Re}\left(z\frac{s'(z)}{s(z)}\right) = p(z) = \frac{1+\phi(z)}{1-\phi(z)}, \quad p(z) \in \mathcal{P}(1,-1).$$
(1.2)

Let  $S_1(z)$  and  $S_2(z)$  be analytic functions in  $\mathbb{D}$  with  $S_1(0) = S_2(0)$ . We say that  $S_1(z)$  is subordinate to  $S_2(z)$  and denoted by  $S_1(z) \prec S_2(z)$ , if  $S_1(z) = S_2(\phi(z))$  for some function  $\phi(z) \in \Omega$  and every  $z \in \mathbb{D}$ . If  $S_1(z) \prec S_2(z)$ , then  $S_1(\mathbb{D}) \subset S_2(\mathbb{D})$  [1]. The radius of starlikeness of the class of sense-preserving log-harmonic mapping is

$$r_{\rm s} = \sup\left\{r | \operatorname{Re}\left(\frac{zf_z - \overline{z}f_{\overline{z}}}{f}\right) > 0, 0 < r < 1\right\}.$$

Finally, let H(D) be the linear space of all analytic functions defined on the open unit disc  $\mathbb{D}$ . A sense-preserving log-harmonic mapping is the solution of the non-linear elliptic partial differential equation

$$\frac{\overline{f_z}}{\overline{f}} = w(z)\frac{f_z}{f},\tag{1.3}$$

where  $w(z) \in H(\mathbb{D})$  is the second dilatation of f such that |w(z)| < 1 for every  $z \in \mathbb{D}$ . It has been shown that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$f = h(z)\overline{g(z)} \tag{1.4}$$

where h(z) and g(z) are analytic functions in  $\mathbb{D}$ .

On the other hand, if f vanishes at z = 0 and at no other point, then f admits the representation,

$$f = z |z|^{2\beta} h(z)\overline{g(z)}, \tag{1.5}$$

where  $\operatorname{Re}\beta > -1/2$ , h(z) and g(z) are analytic in  $\mathbb{D}$  with g(0) = 1 and  $h(0) \neq 0$ . We note that the class of log-harmonic mappings is denoted by  $\mathscr{S}_{LH}$ .

Let  $f = zh(z)\overline{g(z)}$  be an element of  $\delta_{LH}$ . We say that f is a Janowski starlike log-harmonic mapping if

$$1 + \frac{1}{b} \left( \frac{zf_z - \overline{z}f_{\overline{z}}}{f} - 1 \right) = p(z) = \frac{1 + A\phi(z)}{1 + B\phi(z)}, \quad p(z) \in \mathcal{P}(A, B)$$

$$(1.6)$$

where  $-1 \le B < A \le 1$ ,  $b \ne 0$  and complex and denote by  $\delta_{LH}^*(A, B, b)$  the set of all starlike log-harmonic mappings. Also we denote by  $\delta_{PLH}^*(A, B, b)$  the class of all functions in  $\delta_{LH}^*(A, B, b)$  for which  $(zh(z)) \in \delta^*(A, B)$  for all  $z \in \mathbb{D}$ .

We note that if we give special values to *b*, then we obtain important subclasses of Janowski starlike log-harmonic mappings

i. For b = 0, we obtain the class of starlike log-harmonic mappings.

ii. For  $b = 1 - \alpha$ ,  $0 \le \alpha < 1$ , we obtain the class of starlike log-harmonic mappings of order  $\alpha$ .

iii. For  $b = e^{-i\lambda} \cos \lambda$ ,  $|\lambda| < \frac{\pi}{2}$ , we obtain the class of  $\lambda$ -spirallike log-harmonic mappings.

iv. For  $b = (1 - \alpha)e^{-i\lambda} \cos \lambda$ ,  $0 \le \alpha < 1$ ,  $|\lambda| < \frac{\pi}{2}$ , we obtain the class of  $\lambda$ -spirallike log-harmonic mappings of order  $\alpha$ .

#### 2. Main results

**Theorem 2.1.** Let  $f = zh(z)\overline{g(z)}$  be an element of  $\mathscr{S}^*_{LH}(A, B, b)$ . Then

$$f = zh(z)\overline{g(z)} \in \mathscr{S}_{LH}^*(A, B, b) \Leftrightarrow \begin{cases} z\frac{h'(z)}{h(z)} - \overline{z}\frac{\overline{g'(z)}}{\overline{g(z)}} \prec \frac{b(A-B)z}{1+Bz}; & B \neq 0, \\ z\frac{h'(z)}{h(z)} - \overline{z}\frac{\overline{g'(z)}}{\overline{g(z)}} \prec bAz; & B = 0. \end{cases}$$
(2.1)

Download English Version:

## https://daneshyari.com/en/article/4639079

Download Persian Version:

https://daneshyari.com/article/4639079

Daneshyari.com