Some results on a starlike log-harmonic mapping of order alpha

Melike Aydog̃an*

Department of Mathematics, Isik University, İstanbul, Turkey

ARTICLE INFO

Article history:

Received 2 June 2013

MSC:

30C55
30C45

Keywords:

Log-harmonic mappings
Starlike function
Distortion theorem

A B S T R A C T

Let $H(D)$ be the linear space of all analytic functions defined on the open unit disc $D=z \in$ $C:|z|<1$. A sense preserving log-harmonic mapping is the solution of the non-linear elliptic partial differential equation

$$
f_{z}=w(z) f_{z}\left(f_{z} / f\right)
$$

where $w(z) \in H(D)$ is the second dilatation of f such that $|w(z)|<1$ for all $z \in D$.
A sense preserving log-harmonic mapping is a solution of the non-linear elliptic partial differential equation

$$
\begin{equation*}
\frac{f_{\bar{z}}}{\bar{f}}=w(z) \cdot \frac{f_{z}}{f} \tag{0.1}
\end{equation*}
$$

where $w(z)$ the second dilatation of f and $w(z) \in H(D),|w(z)|<1$ for every $z \in D$. It has been shown that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$
\begin{equation*}
f(z)=h(z) \overline{g(z)} \tag{0.2}
\end{equation*}
$$

where $h(z)$ and $g(z)$ are analytic in D with the normalization $h(0) \neq 0, g(0)=1$. On the other hand if f vanishes at $z=0$, but it is not identically zero, then f admits the following representation

$$
\begin{equation*}
f(z)=z \cdot z^{2 \beta} h(z) \overline{g(z)} \tag{0.3}
\end{equation*}
$$

where $\operatorname{Re} \beta>-\frac{1}{2}, h(z)$ and $g(z)$ are analytic in the open disc D with the normalization $h(0) \neq 0, g(0)=1$ (Abdulhadi and Bshouty, 1988) [2], (Abdulhadi and Hengartner, 1996) [3].

In the present paper, we will give the extent of the idea, which was introduced by Abdulhadi and Bshouty (1988) [2]. One of the interesting applications of this extent idea is an investigation of the subclass of log-harmonic mappings for starlike log-harmonic mappings of order alpha.
© 2013 Published by Elsevier B.V.

1. Introduction

Let Ω be the family of functions $\phi(z)$ which are regular in \mathbb{D} and satisfy the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$. Next, denote by $\mathcal{P}(A, B)$ the family of functions

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots
$$

[^0]regular in \mathbb{D}, such that $p(z)$ is in $\mathcal{P}(A, B)$ if and only if
\[

$$
\begin{equation*}
p(z)=\frac{1+A \phi(z)}{1+B \phi(z)}, \quad-1 \leq B<A \leq 1 \tag{1.1}
\end{equation*}
$$

\]

for some function $\phi(z) \in \Omega$ and for every $z \in \mathbb{D}$. Therefore we have $p(0)=1, \operatorname{Re} p(z)>\frac{1-A}{1-B}>0$ whenever $p(z) \in \mathcal{P}(A, B)$. Moreover, let $\delta^{*}(A, B)$ denote the family of functions

$$
s(z)=z+a_{2} z^{2}+\cdots
$$

regular in \mathbb{D}, and such that $s(z)$ is in s^{*} if and only if

$$
\begin{equation*}
\operatorname{Re}\left(z \frac{s^{\prime}(z)}{s(z)}\right)=p(z)=\frac{1+\phi(z)}{1-\phi(z)}, \quad p(z) \in \mathcal{P}(1,-1) \tag{1.2}
\end{equation*}
$$

Let $S_{1}(z)$ and $S_{2}(z)$ be analytic functions in \mathbb{D} with $S_{1}(0)=S_{2}(0)$. We say that $S_{1}(z)$ is subordinate to $S_{2}(z)$ and denoted by $S_{1}(z) \prec S_{2}(z)$, if $S_{1}(z)=S_{2}(\phi(z))$ for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$. If $S_{1}(z) \prec S_{2}(z)$, then $S_{1}(\mathbb{D}) \subset S_{2}(\mathbb{D})$ [1].

The radius of starlikeness of the class of sense-preserving log-harmonic mapping is

$$
r_{s}=\sup \left\{r \left\lvert\, \operatorname{Re}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}\right)>0\right.,0<r<1\right\} .
$$

Finally, let $H(D)$ be the linear space of all analytic functions defined on the open unit disc \mathbb{D}. A sense-preserving log-harmonic mapping is the solution of the non-linear elliptic partial differential equation

$$
\begin{equation*}
\frac{\overline{f_{\bar{z}}}}{\bar{f}}=w(z) \frac{f_{z}}{f} \tag{1.3}
\end{equation*}
$$

where $w(z) \in H(\mathbb{D})$ is the second dilatation of f such that $|w(z)|<1$ for every $z \in \mathbb{D}$. It has been shown that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$
\begin{equation*}
f=h(z) \overline{g(z)} \tag{1.4}
\end{equation*}
$$

where $h(z)$ and $g(z)$ are analytic functions in \mathbb{D}.
On the other hand, if f vanishes at $z=0$ and at no other point, then f admits the representation,

$$
\begin{equation*}
f=z|z|^{2 \beta} h(z) \overline{g(z)} \tag{1.5}
\end{equation*}
$$

where $\operatorname{Re} \beta>-1 / 2, h(z)$ and $g(z)$ are analytic in \mathbb{D} with $g(0)=1$ and $h(0) \neq 0$. We note that the class of log-harmonic mappings is denoted by $\delta_{L H}$.

Let $f=z h(z) \overline{g(z)}$ be an element of $s_{L H}$. We say that f is a Janowski starlike log-harmonic mapping if

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)=p(z)=\frac{1+A \phi(z)}{1+B \phi(z)}, \quad p(z) \in \mathcal{P}(A, B) \tag{1.6}
\end{equation*}
$$

where $-1 \leq B<A \leq 1, b \neq 0$ and complex and denote by $s_{L H}^{*}(A, B, b)$ the set of all starlike log-harmonic mappings. Also we denote by $\delta_{P L H}^{*}(A, B, b)$ the class of all functions in $s_{L H}^{*}(A, B, b)$ for which $(z h(z)) \in s^{*}(A, B)$ for all $z \in \mathbb{D}$.

We note that if we give special values to b, then we obtain important subclasses of Janowski starlike log-harmonic mappings
i. For $b=0$, we obtain the class of starlike log-harmonic mappings.
ii. For $b=1-\alpha, 0 \leq \alpha<1$, we obtain the class of starlike log-harmonic mappings of order α.
iii. For $b=e^{-i \lambda} \cos \lambda,|\lambda|<\frac{\pi}{2}$, we obtain the class of λ-spirallike log-harmonic mappings.
iv. For $b=(1-\alpha) e^{-i \lambda} \cos \lambda, 0 \leq \alpha<1,|\lambda|<\frac{\pi}{2}$, we obtain the class of λ-spirallike log-harmonic mappings of order α.

2. Main results

Theorem 2.1. Let $f=z h(z) \overline{g(z)}$ be an element of $s_{L H}^{*}(A, B, b)$. Then

$$
f=z h(z) \overline{g(z)} \in s_{L H}^{*}(A, B, b) \Leftrightarrow \begin{cases}z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}} \prec \frac{b(A-B) z}{1+B z} ; & B \neq 0, \tag{2.1}\\ z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}} \prec b A z ; & B=0 .\end{cases}
$$

https://daneshyari.com/en/article/4639079

Download Persian Version:
https://daneshyari.com/article/4639079

Daneshyari.com

[^0]: * Tel.: +90 5323347013.

 E-mail address: melike.aydogan@isikun.edu.tr.

