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a b s t r a c t

The matrix nuclear norm minimization problem has received much attention in recent
years, largely because its highly related to the matrix rank minimization problem arising
from controller design, signal processing and model reduction. The alternating direction
method is a very popular way to solve this problem due to its simplicity, low storage,
practical computation efficiency andnice convergence properties. In this paper,wepropose
an alternating direction method, where one variable is determined explicitly, and the
other variable is computed by a linear conjugate gradient algorithm. At each iteration, the
method involves a singular value thresholding and its convergence result is guaranteed
in this literature. Extensive experiments illustrate that the proposed algorithm compares
favorable with the state-of-the-art algorithms FPCA and IADM_BB which were specifically
designed in recent years.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let A : Rm×n
→ Rp be a linear map and b ∈ Rp. The linear constrained nuclear norm minimization problem is to find

X ∈ Rm×n such that

min
X∈Rm×n

∥X∥∗, s.t. A(X) = b. (1)

Assuming that rank(X) = r , the nuclear normof X is defined as ∥X∥∗ =
r

i=1 σi(X), where σi(X) are the singular values of X .
Problem (1) is a commonly-used convex relation of the matrix rank minimization problem which arises from various areas
such as machine learning, statistics, engineering and so on [1]. In practical applications, if some noises are contaminated,
problem (1) should be relaxed to the inequality constrained problem

min
X∈Rm×n

∥X∥∗, s.t. ∥A(X)− b∥2 ≤ δ, (2)

where δ ≥ 0 is the noise level. Model (2) is equal to (1) as δ = 0. Another variant of the model (2) is the nuclear norm
regularized least square

min
X∈Rm×n

∥X∥∗ +
γ

2
∥A(X)− b∥22, (3)
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where γ > 0 is to balance the two terms for minimization. From the optimization theory, with proper choices on δ and γ ,
it is known that the solutions of (2) and (3) are accordant, and both problems are equivalent in some sense.

Many algorithms have been developed in recent years to solve matrix nuclear norm problems with different types. Cai,
Candès, and Shen [2] presented a singular value thresholding algorithm to solve an approximate version of (1). Ma, Goldfarb,
and Chen [3] extended the well-known fixed point continuation algorithm [4] to solve the penalty function of (1) with
approximate singular value decomposition (FPCA). Yang and Yuan [5] presented an alternating direction method (ADM)
to solve the nuclear norm regularized least square (3) as well as the models (1) and (2). In their algorithm, a linearized
technique is used, and both subproblems admit explicit solutions. Instead of the linearized technique, the ADM algorithm
of Xiao and Jin [6] solves one of the subproblems iteratively by the Barzilai–Borwein gradient method [7].

In this paper, we further consider the ADMalgorithmand use it to solvematrix nuclear normminimization problems. Our
algorithm is similar to the ADM algorithm of Xiao and Jin; that is, to reformulate (1) as an equivalentmodel with an auxiliary
variable and to minimize the corresponding augmented Lagrangian function alternatively. One variable is computed by
using a singular value shrinkage, while the other variable is computed by solving a linear system with a conjugate gradient
method [8]. Although the linear conjugate gradientmethod is classic and its convergence properties have beenwell studied,
its remarkable effectiveness in matrix nuclear norm minimization is verified in our work.

We organize the rest of the paper as follows. In Section 2, we briefly review the classic ADM method and construct our
method subsequently. Then in Section 3, we present some numerical results to illustrate the efficiency of the proposed
algorithm. Finally, we give some conclusions in Section 4.

2. Algorithm

The earliest ADM results were from Glowinski and Marrocco [9], and Gabay and Mercier [10]. ADM is designed to solve
the following separable convex optimization problem

min
x,y

θ1(x)+ θ2(y) (4)

s.t. Ax+ By = c,

where θ1 : Rs
→ R, θ2 : Rt

→ R are convex functions, and A ∈ Rl×s, B ∈ Rl×t , and c ∈ Rl. The corresponding augmented
Lagrangian function is

LA(x, y, λ) = θ1(x)+ θ2(y)− λ⊤(Ax+ By− c)+
β

2
∥Ax+ By− c∥22, (5)

where λ ∈ Rl is the Lagrangian multiplier and β > 0 is a penalty parameter. The classical ADM method is to minimize (5)
first with respect to x, then with respect to y, and then update λ subsequently, i.e.,

xk+1 ← argmin
x

LA(x, yk, λk),

yk+1 ← argmin
y

LA(xk+1, y, λk),

λk+1 ← λk − β[Axk+1 + Byk+1 − c].

The main advantage of ADM is to make full use of the separability structure of the objection function θ1(x) + θ2(y). For a
theoretical analysis of ADM,we can refer to Proposition 4.2 and its proof in book [11, Chapter 3, p. 256]. Recent developments
in ADM can be found in [12–21].

Based on the above analysis, we now re-consider problem (1). By introducing an auxiliary variable Y , the original model
(1) is equivalently transformed into

min
X∈Rm×n

∥X∥∗, s.t. X − Y = 0, A(Y ) = b. (6)

Its augmented Lagrangian function is

LA(X, Y , Z, z) = ∥X∥∗ − ⟨Z, X − Y ⟩ +
µ

2
∥X − Y∥2F − ⟨z, A(Y )− b⟩ +

γ

2
∥A(Y )− b∥22, (7)

where z ∈ Rp and Z ∈ Rm×n are multipliers of equality constraints, µ > 0 and γ > 0 are penalty parameters, and ⟨·⟩
denotes the standard trace inner product for the matrix, or the standard inner product for vectors. For fixed (Xk, Yk), the
next pair (Xk+1, Yk+1) is determined by

Xk+1 ← argmin
X

LA(X, Yk, Zk, zk), (8)

Yk+1 ← argmin
Y

LA(Xk+1, Y , Zk, zk), (9)

Zk+1 ← Zk − µ[Xk+1 − Yk+1], (10)

zk+1 ← zk − γ [A(Yk+1)− b]. (11)
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