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a b s t r a c t

In the framework of iterative regularization techniques for large-scale linear ill-posed
problems, this paper introduces a novel algorithm for the choice of the regularization
parameter when performing the Arnoldi–Tikhonov method. Assuming that we can apply
the discrepancy principle, this new strategy can work without restrictions on the choice of
the regularizationmatrix. Moreover, this method is also employed as a procedure to detect
the noise level whenever it is just overestimated. Numerical experiments arising from the
discretization of integral equations and image restoration are presented.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the solution of ill-conditioned linear systems of equations

Ax = b, A ∈ RN×N , b ∈ RN , (1)

in which the matrix A is assumed to have singular values that rapidly decay and cluster near zero. These kind of systems
typically arise from the discretization of linear ill-posed problems, such as Fredholm integral equations of the first kindwith
a compact kernel; for this reason they are commonly referred to as linear discrete ill-posed problems (see [1], Chapter 1, for
a background).

While working with this class of problems, one commonly assumes that the available right-hand side vector b is affected
by noise, caused by measurement or discretization errors. Therefore, throughout the paper we suppose that

b = b + e,

where b represents the unknownnoise-free right-hand side, andwe denote by x the solution of the error-free system Ax = b.
We also assume that a fairly accurate estimate of ε = ∥e∥ is known, where ∥ · ∥ denotes the Euclidean norm.

Because of the ill-conditioning ofA and the presence of noise in b, some sort of regularization is generally employed to find
a meaningful approximation of x. In this framework, a popular and well-established regularization technique is Tikhonov
method, which consists in solving the minimization problem

min
x∈Rn


∥Ax − b∥2

+ λ∥Lx∥2 , (2)

where λ > 0 is the regularization parameter and L ∈ R(N−p)×N is the regularizationmatrix (see e.g. [2] and [1], Chapter 5, for
a background). We denote the solution of (2) by xλ. Common choices for L are the identity matrix IN (in this case (2) is said
to be in standard form) or scaled finite differences approximations of the first or the second order derivative (when L ≠ IN
(2) is said to be in general form). We remark that, especially when one has a good intuition of the behavior of the solution x,
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a regularization matrix different from the identity can considerably improve the quality of the approximation given by the
solution of (2). The ideal situation is when the features of the exact solution that one wants to preserve belong to the null
space of the matrix L, since L acts as a penalizing filter (see [3] and the references therein for a deeper discussion).

The choice ofλ is also crucial, since itweights the penalizing term and so specifies the amount of regularization onewants
to impose.Many techniques have been developed to determine a suitable value for the regularizing parameter, usually based
on the amount of knowledge of the error on b (again we refer to [1], Chapter 7, for an exhaustive background; we also quote
the recent paper [4] for the state of the art). When a fairly accurate approximation of ε is available (as in our case), a widely
used method is the so-called discrepancy principle. It prescribes to take, as regularization parameter, the value of λ that
solves the following equation

∥b − Axλ∥ = ηε, (3)

where η > 1 is a user-specified constant, typically very close to 1. The vector b − Axλ is called discrepancy.
In this paper we solve (2) using an iterative scheme called Arnoldi–Tikhonov (AT) method, first proposed in [5]. This

method has proved to be particularly efficient when dealing with large scale problems, as for instance the ones arising
from image restoration. Indeed, it is based on the projection of the original problem (2) onto Krylov subspaces of smaller
dimensions computed by the Arnoldi algorithm. However, for reasons closely related to the parameter choice strategy,
this method has been experimented mostly when (2) is in standard form [6]; only recently an extension which employs
generalized Krylov subspaces and that therefore can deal with general form problems has been introduced in [3].

Here we mainly focus our attention on general form problems, but we adopt a different approach from the one derived
in [3], since we work with the usual Krylov subspaces Km(A, b) = span{b, Ab, . . . , Am−1b} (or, if an approximate solution
x0 is available, with Km(A, b− Ax0)). We call this method Generalized Arnoldi–Tikhonov (GAT) to avoid confusion with the
standard implementation of the AT method. The parameter choice strategy presented in this paper is extremely simple and
does not require the problem (2) to be in standard form. Moreover, this new algorithm can handle rectangular matrices L,
which is an evident advantage since inmany applications this option is themost natural one. Our basic idea is to use a linear
approximation of the discrepancy

∥b − Axm∥ ≈ αm + λβm,

where xm is themth approximation of the GAT method, and to solve with respect to λ the corresponding equation

αm + λβm = ηε.

As we shall see, the value of αm in the above equation will be just the GMRES residual, whereas βm will be defined using
the discrepancy of the previous step. In this way, starting from an initial guess λ0, we will actually construct a sequence of
parameters λ1, λ2, . . . , such that λm−1 will be used to compute xm until the discrepancy principle (3) is satisfied. We will
be able to demonstrate that the above technique is in fact a secant zero finder.

As we shall see, the procedure is extremely simple and does not require any hypothesis on the regularization matrix
L. For this reason, in the paper we also consider the possibility of using the GAT method to approximate the noise level ε
whenever it is just overestimated by a quantity ε > ε. In a situation like this the discrepancy principle generally yields poor
results if the approximation of ε is coarse. Anyway, our idea consists in restarting the GAT method, and to use the observed
discrepancy to improve the approximation of ε step by step. The examples so far considered have demonstrated that this
approach is really effective, and the additional expense due to the restarts of the GAT method does not heavily affect the
total amount of work. This is due to the fact that the GAT method is extremely fast whenever an initial approximation x0 is
available.

The paper is organized as follows. In Section 2 we review the AT method and we describe its generalized version, the
GAT method. In Section 3 we introduce the new technique for the choice of λ. In Section 4 we display the results obtained
performing common test problems, as well as some examples of image restoration. In Section 5 we suggest an extension of
the previous method that allows us to work even when the quantity ε is overestimated. Finally, in Section 6, we propose
some concluding remarks.

2. The Arnoldi–Tikhonov method

The Arnoldi–Tikhonov (AT) method has been introduced in [5] with the basic aim of reducing the problem

min
x∈RN


∥Ax − b∥2

+ λ∥Lx∥2 , (4)

in the case of L = IN , to a problem of much smaller dimension. The idea is to project the matrix A onto the Krylov subspaces
generated by A and the vector b, i.e., Km(A, b) = span{b, Ab, . . . , Am−1b}, withm ≪ N . The method was even introduced to
avoid the matrix–vector multiplication with AT required by Lanczos type schemes (see e.g [7,5,8,9]). For the construction of
the Krylov subspaces the ATmethod uses the Arnoldi algorithm (see [10], Section 6.3, for an exhaustive background), which
yields the decomposition

AVm = Vm+1Hm+1, (5)
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