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a b s t r a c t

Long-time integrations are an important issue in the numerical solution of Hamiltonian
systems. They are time consuming and it is natural to consider the use of parallel architec-
tures for reasons of efficiency. In this context the parareal algorithm has been proposed by
several authors.

The present work is a theoretical study of the parareal algorithm when it is applied to
Hamiltonian differential equations. The idea of backward error analysis is employed to get
insight into the long-time behavior of numerical approximations. One of the main results
is that convergence of the parareal iterations restricts the length of the time window.
For nearly integrable systems its length is bounded by the square root of the inverse of
the accuracy of the coarse integrator. The theoretical bounds are confirmed by numerical
experiments.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Long-time integrations of differential equations can be time consuming and it is a natural idea to consider the use of
computations in parallel. In this work we restrict our attention to Hamiltonian systems of ordinary differential equations

ẏ = f (y), f (y) = J−1
∇H(y), J =


0 I
−I 0


, (1)

where the vector y = (p, q) collects momenta and positions, and the smooth scalar function H(y) is called Hamiltonian or
energy of the system. The symbol I in the structure matrix J is the d-dimensional identity matrix, and d is the number of
degrees of freedom. The exact flow ϕt(y) is for every t a symplectic transformation, which means that its derivative with
respect to the initial value satisfies

ϕ′

t(y)
TJ ϕ′

t(y) = J. (2)

It is well known that for long-time integrations the use of symplecticmethods is recommended. Thismeans that the discrete
flow yn+1 = Φ1T (yn) should share the property (2) with the exact flow. This then implies that the energy is nearly preserved
along the numerical solution; see [1].

The parareal algorithm has been introduced by Lions, Maday, and Turinici in [2] as an approach for exploiting parallel
architectures in the numerical solution of real time problems. Among earlier attempts for parallel in time discretizations let
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us mention the work of Bellen and Zennaro [3], where a Steffensen-like iterative method is proposed for general difference
equations, the parallel shooting technique of Chartier and Philippe [4], and the review article [5] on CWI (Amsterdam)
contributions on parallel Runge–Kutta methods.

The parareal algorithm, originally proposed for the numerical treatment of partial differential equations, has also found
applications in ordinary differential equations. During the last few years much research has been devoted to the long-time
integration of Hamiltonian systems. The ‘‘symplectic parareal’’ of [6] is a non-iterative algorithm whose practical relevance
has to be proven. Multi-time step parareal algorithms [7] are proposed for parallelizing in time molecular dynamics
problems. The article [8] proposes a time-parallel algorithm for almost integrable Hamiltonian systems and has inmind very
accurate computations in planetary motion. Our research is to a large extent motivated by [9], where symmetric parareal
algorithms including projections are proposed for Hamiltonian systems.

After recalling the definition of the parareal algorithm for initial value problems of ordinary differential equations
(Section 2), we present the main results, which are long-time error estimates for the parareal iterates for Hamiltonian
systems, and numerical illustrations in Section 3. If ε denotes the accuracy of the coarse integrator, we show that
convergence can be achieved on intervals whose length is restricted by O(ε−1) for the harmonic oscillator, by O(ε−1/2) for
integrable systems, and byO(1) for systemswith chaotic solutions. The proofs are given in Section 4 for linear problems and
in Sections 5 and 6 for nonlinear problems. Section 7 shows how the analysis extends to the symmetric parareal algorithm.
For high accuracy computations we present a variant of the parareal algorithm in Section 8, which permits to use quadruple
precision for the fine integrator and double precision for the coarse integrator.

2. The parareal algorithm for ordinary differential equations

Consider an initial value problem of ordinary differential equations ẏ = f (y), y(0) = y0. For a given step size 1T we
consider two discrete flowmaps: a cheap approximation with low accuracy which we denote by ϕG

1T (y) (coarse integrator),
and an accurate approximation which we denote by ϕF

1T (y) (fine integrator). The parareal algorithm, which is given by
uk
0 = y0 for all k, and

u0
n+1 = ϕG

1T (u
0
n)

uk
n+1 = ϕF

1T (u
k−1
n ) − ϕG

1T (u
k−1
n ) + ϕG

1T (u
k
n),

(3)

is expected to yield approximations that converge rapidly to the solution of the fine integrator. We use the notation

cG cost (cpu time) of one step of the coarse integrator ϕG
1T ,

cF cost (cpu time) of one step of the fine integrator ϕF
1T ,

K maximal number of parareal iterations,
N number of steps in one time window of length T , i.e., N1T = T .

A sequential computation of the solution on an interval of length T = N1T with the accurate integrator ϕF
1T requires a total

time

NcF with 1 processor.

For the standard application of the parareal algorithm on the same interval one first computes sequentially the values u0
n for

all n = 1, . . . ,N . In the kth iteration, one computes all values ϕF
1T (u

k−1
n ) in parallel and subsequently the values uk

n in a
sequential manner. This requires a total time

NcG + K(NcG + cF ) with N processors.

The performance can be improved, if the different processors are able to perform different tasks at the same time. The idea
is to start the computation with the integrators ϕF

1T and ϕG
1T as soon as the initial values are available. Such a procedure is

called pipelined parareal algorithm in [10] and requires a total timeNcG+K(cG+cF )withN processors. Aminor improvement
is possible to perform the computation in a total time

NcG + KcF with (q + 1)K + 1 processors,

where q denotes the smallest positive integer satisfying cF ≤ qcG. This can be achieved as follows: on the first processor
one computes sequentially the values u0

n+1 for n = 0, . . . ,N − 1; in the kth iteration, q processors are used to compute
ϕF

1T (u
k−1
n ) for n = k− 1, . . . ,N − 1, starting the computation as soon as uk−1

n is available, and a further processor computes
sequentially the values ϕG

1T (u
k
n) and uk

n+1 for n = k, . . . ,N − 1. The first processor requires the time NcG and every parareal
iteration requires the additional time cF .

In general it is not possible to treat the whole interval [0, Tend], where the problem has to be solved, in one piece. One
has to divide it into time windows on which the parareal algorithm can be applied. To get a significant benefit from the use
of parallel architectures, the length T of the time window should be as large as possible. It is one of the main results of our
research that this length T cannot be arbitrarily large for Hamiltonian systems and is restricted in terms of the accuracy of
the coarse integrator.
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