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a b s t r a c t

In this paper, we first study the mean square stability of numerical methods for stochastic
delay differential equations under a coupled condition on the drift and diffusion coeffi-
cients. This condition admits that the diffusion coefficient can be highly nonlinear, i.e., it
does not necessarily satisfy a linear growth or global Lipschitz condition. It is proved that,
for all positive stepsizes, the classical stochastic theta method with θ ≥ 0.5 is asymptot-
ically mean square stable and the split-step theta method with θ > 0.5 is exponentially
mean square stable. Conditional stability results for the methods with θ < 0.5 are also ob-
tained under a stronger assumption. Finally, we further investigate the mean square dissi-
pativity of the split-step theta method with θ > 0.5 and prove that the method possesses
a bounded absorbing set in mean square independent of initial data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic delay differential equations (SDDEs) play an important role in many applications (cf. [1,2]). In recent years,
the numerical analysis of such equations has attracted a lot of attention. For example, Küchler and Platen [3] discussed
strong discrete time approximation of SDDEs. Baker and Buckwar [4] studied the convergence of explicit one-stepmethods.
Mao and Sabanis [5] investigated the convergence of the Euler–Maruyama method under the local Lipschitz condition.
Hu et al. [6] introduced the Milstein scheme for SDDEs.

One of the interesting problems in numerical analysis is the investigation of the stability of numerical methods. For
example, Liu et al. [7] studied the mean-square stability of the stochastic theta method for linear scalar model equations.
Baker and Buckwar [8] analyzed the exponential stability in p-th mean of the stochastic theta method by using Halanay
inequality. In recent years, nonlinear stability of numerical methods has also received attention. Mao [9] proved that when
the stepsize is sufficiently small, the Euler–Maruyama method can reproduce the mean-square exponential stability of the
underlying SDDEs which satisfy the global Lipschitz condition. Wang and Zhang [10] obtained some stability conditions for
the Milstein method. Wu et al. [11] studied the almost sure exponential stability of numerical methods. Wang and Gan [12]
investigated the mean-square exponential stability of a split-step Euler method. Huang et al. [13,14] studied the delay-
dependent stability of the stochastic theta method. To the best of our knowledge, however, all above results are derived for
SDDEs of which the diffusion coefficient satisfies a linear growth or global Lipschitz condition.
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In this paper,we study the stability of numericalmethods under a coupled condition on thedrift anddiffusion coefficients.
This condition admits that the diffusion coefficient is highly nonlinear, i.e., it does not necessarily satisfy the linear growth
or global Lipschitz condition. The classical stochastic theta method and the split-step theta method are considered and
some mean-square stability results are obtained. This paper is organized as follows. In Section 2, the two classes of theta
methods are recalled. In Section 3, some exponential stability and asymptotic stability results are derived. In Section 4, we
further study the mean square dissipativity of the split-step theta method. Finally, in Section 5, we give some numerical
experiments.

2. Two classes of theta methods for SDDEs

Let {Ω,F , {Ft}t≥0, P} be a complete probability space with a filtration {Ft}t≥0 satisfying the usual condition (i.e., it is
increasing and right continuous, and F0 contains all P-null sets). Letw(t) = (w1(t), . . . , wl(t))T be standard l-dimensional
Brownian motion defined on the probability space. Let f : R+ × Rd

× Rd
→ Rd and g : R+ × Rd

× Rd
→ Rd×l be given

mappings, where R+ = [0,+∞). Consider d-dimensional Itô SDDEs of the form
dy(t) = f (t, y(t), y(t − τ))dt + g(t, y(t), y(t − τ))dw(t), t ≥ 0,
y(t) = φ(t), t ∈ [−τ , 0], (2.1)

where the delay τ is a positive constant, and φ(t) is an F0-measurable, C([−τ , 0]; Rd)-valued random variable satisfying

sup
−τ≤t≤0

E[φT (t)φ(t)] < +∞, (2.2)

with the notation E denoting the mathematical expectation with respect to P.
There exist many numerical schemes for stochastic ordinary differential equations in the literature (see, e.g., [15–18]). If

an appropriate interpolation procedure for the delay argument is employed, these schemes can be adapted to solve SDDEs.
An adaptation of the classic stochastic theta method to (2.1) leads to

yn+1 = yn + θ1tf (tn+1, yn+1, ȳn+1)+ (1 − θ)1tf (tn, yn, ȳn)+ g(tn, yn, ȳn)1wn, (2.3)

where 1t > 0 is the time stepsize, tn = n1t, yn is an approximation to y(tn), θ ∈ [0, 1] is a fixed parameter, 1wn =

w(tn+1)− w(tn), and ȳn denotes an approximation to the delay argument y(tn − τ).
For an arbitrarily fixed time stepsize 1t , there exist a unique positive integer m and a real number δ ∈ [0, 1) such that

τ = (m− δ)1t . This implies that y(tn − τ) = y(tn−m + δ1t). Therefore, it is natural to define ȳn by the linear interpolation

ȳn = δyn−m+1 + (1 − δ)yn−m, (2.4)

where yn = φ(tn) for n ≤ 0.
In order to distinguish this method and another method with parameter θ below, we will refer to (2.3) as the stochastic

linear theta (SLT) method following the notations in [19].
An adaptation of the split-step theta (SST) method in [19] to problem (2.1) leads to

Yn = yn + θ1tf (tn + θ1t, Yn, Ȳn), (2.5)

Ȳn = δYn−m+1 + (1 − δ)Yn−m, (2.6)

yn+1 = yn +1tf (tn + θ1t, Yn, Ȳn)+ g(tn + θ1t, Yn, Ȳn)1wn, (2.7)

where Yn = φ(tn +θ1t) for n < 0. Here we use the equi-stage linear interpolation technique [20] to approximate the delay
argument. In the case of deterministic delay equations (i.e., g = 0), it is known that this interpolation can lead to desirable
linear and nonlinear stability properties (cf. [20,21]). We naturally expect that it has a good performance for stochastic
equations.

In the special case of θ = 1, this method is equivalent to the split-step backward Euler method, which was first proposed
for stochastic ordinary differential equations in [22] and which has been applied to SDDEs in [12]. We also mention that
there exist some other types of split methods with parameter θ in the literature (see, e.g., [23–25]). The reason why we
consider scheme (2.5)–(2.7) is that we can establish some provable stability results for it. In particular, it possesses a better
exponential mean square stability property than the classic SLT method.

Now we recall some stability concepts for numerical methods.

Definition 2.1. For a given stepsize 1t , a numerical method is said to be exponentially stable in mean square if there is
a pair of positive constants γ and C such that for any initial data φ(t) the numerical solution yn produced by the method
satisfies

E[yTnyn] ≤ Ce−γ tn sup
−τ≤t≤0

E[φT (t)φ(t)], ∀n ≥ 0.
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