On solvability of linear systems generated by the complex variable boundary element method

J. Drobek ${ }^{\text {a,* }}$, L. Jokl ${ }^{\text {b,1 }}$
${ }^{\text {a }}$ Department of Mathematics and Descriptive Geometry, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
${ }^{\mathrm{b}}$ Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University, Tomkova 40, 77900 Olomouc, Czech Republic

A R TICLE INFO

Article history:

Received 30 October 2012
Received in revised form 8 June 2013

MSC:

30E10
30E20
30E25
65 E05
65M22
Keywords:
Complex variable boundary element
method
Approximate solution
Cauchy-type integral
Piecewise linear function
Dirichlet problem
Linear system solvability

Abstract

Within the complex variable boundary element method, an approximate solution is determined by a Cauchy-type integral whose density is a piecewise linear function. Such an integral can be expressed by a linear combination of some functions that can be chosen in many ways. The choice influences properties of a linear system that arises by discretization of some boundary value problem. One choice is presented that allows to deduce some results about the system solvability. It is demonstrated on the Dirichlet problem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

From the middle of the 1980s, T.V. Hromadka II and his cooperators develop a new method, the complex variable boundary element method, shortly CVBEM, see for example [1,2] etc., allowing to approximately solve some planar boundary value problems. The main goal of the CVBEM is the fact that any Cauchy-type integral can be approximated by another one whose density is a suitable piecewise linear function. The Cauchy-type integral having a piecewise linear density can be expressed by a linear combination

$$
\begin{equation*}
\sum_{j=0}^{m-1} l_{j} f_{j} \tag{1}
\end{equation*}
$$

[^0]of some functions f_{0}, \ldots, f_{m-1} by different ways. If these functions are suitably chosen and if the coefficients l_{0}, \ldots, l_{m-1} are enumerated from a system of linear equations that reflect prescribed boundary conditions, then (1) can generate an approximate solution of the appropriate boundary value problem. The choice of the functions f_{0}, \ldots, f_{m-1} influences many aspects of the CVBEM numerical analysis, e.g. the solvability of the appropriate linear system. There have been presented large possibilities of how to choose the functions f_{0}, \ldots, f_{m-1} in [3-5] etc. However, without any supporting results on the solvability.

In this article we present such a choice of the functions f_{0}, \ldots, f_{m-1} that we can prove two statements on the appropriate linear system solvability. In Sections 2 and 3 we define some terms related to region boundaries and boundary functions. In Section 4 we show some properties of Cauchy-type integrals having a piecewise linear density. We introduce the functions f_{0}, \ldots, f_{m-1} and prove that their real parts g_{0}, \ldots, g_{m-1} are linearly independent in Section 5 ; this is the crucial property allowing to derive the two main statements in Section 7. In Section 6 we use the functions g_{0}, \ldots, g_{m-1} to construct an approximate solution of the Dirichlet problem.

2. Paths

$$
\begin{align*}
& \text { Let }-\infty<\alpha<\beta<+\infty \text {. A continuous mapping } \\
& \qquad \gamma:\langle\alpha, \beta\rangle \longrightarrow \mathbb{C} \tag{2}
\end{align*}
$$

we call a path if there exist $n \in \mathbb{N}$ and a sequence $\left\{\tau_{j}\right\}_{j=0}^{n}$ such that

$$
\alpha=\tau_{0}<\tau_{1}<\cdots<\tau_{n}=\beta
$$

and that the derivative γ^{\prime} of the mapping γ is continuous and nonzero in every interval $\left\langle\tau_{j}, \tau_{j+1}\right\rangle$, where $j \in\{0, \ldots, n-1\}$. We say that the path (2) starts at the point $a=\gamma(\alpha)$ and ends at the point $b=\gamma(\beta)$; we set

$$
[\gamma]=\{\gamma(t): \alpha \leq t \leq \beta\}
$$

By the symbol $\dot{-\gamma}$ we denote the path opposite to the path γ. Then $[\dot{-\gamma}]=[\gamma]$. If a path γ_{1} starts at the same point as another path γ_{0} ends, then $\gamma_{0} \vee \gamma_{1}$ denotes the path emerged by connection of the paths γ_{0}, γ_{1}. Then $\left[\gamma_{0} \vee \gamma_{1}\right]=\left[\gamma_{0}\right] \cup\left[\gamma_{1}\right]$. The path (2) is called a simple arc if the mapping γ is injective. If $\gamma(\alpha)=\gamma(\beta)$, then γ is a closed path. γ is a Jordan path if it is closed and

$$
0<\left|t-t^{\prime}\right|<\beta-\alpha \Longrightarrow \gamma(t) \neq \gamma\left(t^{\prime}\right)
$$

for every $t, t^{\prime} \in \mathbb{R}$.
In this work, the notation (F, D) represents a holomorphic element, i.e. a function F holomorphic in a region $D \subset \mathbb{C}$.
We consider the path (2), $k \in \mathbb{N}$, a sequence $\left\{s_{i}\right\}_{i=0}^{k+1}$ such that

$$
\alpha=s_{0}<s_{1}<\cdots<s_{k}=s_{k+1}=\beta
$$

and a sequence $\left\{\left(F_{i}, D_{i}\right)\right\}_{i=0}^{k}$ such that D_{i} is an open circle containing the set $\gamma\left(\left\langle s_{i}, s_{i+1}\right\rangle\right)$ for every $i \in\{0, \ldots, k\}$ and that

$$
F_{i}(z)=F_{i+1}(z), \quad z \in D_{i} \cap D_{i+1}
$$

for every $i \in\{0, \ldots, k-1\}$. Further, we consider holomorphic elements $(F, D),\left(F^{*}, D^{*}\right)$ such that

$$
D_{0} \subset D, \quad D_{k} \subset D^{*}, \quad F_{0}=\left.F\right|_{D_{0}}, \quad F_{k}=\left.F^{*}\right|_{D_{k}}
$$

The considered situation means that $\left(F^{*}, D^{*}\right)$ is the analytic continuation of (F, D) along the path γ, which we describe by the schema

$$
(F, D) \xrightarrow{\gamma}\left(F^{*}, D^{*}\right)
$$

We set

$$
\gamma[z]=\int_{\gamma} \frac{\mathrm{d} \zeta}{\zeta-z}, \quad z \in \mathbb{C} \backslash[\gamma]
$$

Then $\gamma[\cdot]$ presents a holomorphic function with the derivative

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} z} \gamma[z]=\frac{1}{z-b}-\frac{1}{z-a}, \quad z \in \mathbb{C} \backslash[\gamma] \tag{3}
\end{equation*}
$$

Certainly,

$$
\begin{aligned}
& (\cdot \gamma)[z]=-\gamma[z], \quad z \in \mathbb{C} \backslash[\gamma], \\
& \left(\gamma_{0} \vee \gamma_{1}\right)[z]=\gamma_{0}[z]+\gamma_{1}[z], \quad z \in \mathbb{C} \backslash\left[\gamma_{0} \vee \gamma_{1}\right] .
\end{aligned}
$$

If γ is a Jordan path, then we denote by Ω_{γ} the bounded component of the open set $\mathbb{C} \backslash[\gamma]$ in the sense of the Jordan theorem. A Jordan path γ is positively oriented if

$$
z \in \Omega_{\gamma} \Longleftrightarrow \gamma[z]=2 \pi i
$$

https://daneshyari.com/en/article/4639118

Download Persian Version:
https://daneshyari.com/article/4639118

Daneshyari.com

[^0]: * Corresponding author. Tel.: +420 774880971.

 E-mail address: jaroslav.drobek@vsb.cz (J. Drobek).
 1 Died in 2010.

