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a b s t r a c t

The average vector field (AVF)method is a B-series schemeof the second order. As a discrete
gradient method, it preserves exactly the energy integral for any canonical Hamiltonian
system. We present and discuss two locally exact and energy-preserving modifications
of the AVF method: AVF–LEX (of the third order) and AVF–SLEX (of the fourth order).
Applications to spherically symmetric potentials are given, including a compact explicit
expression for the AVF scheme for the Coulomb–Kepler problem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Discrete gradientmethodswere developedmany years ago formolecular dynamics simulations [1]. Theypreserve exactly
the energy integral, which is of considerable advantage [2]. More recently, discrete gradient methods have been essentially
developed by McLachlan, Quispel and their collaborators [3–5]. In particular, discrete gradient schemes preserving any first
integrals for any ordinary differential equations were constructed [6].

A discrete gradient is a function of two vector variables (yn, yn+1) and has to satisfy (see [3])

∇̄H(yn, yn+1) · (yn+1 − yn) = H(yn+1) − H(yn)

∇̄H(yn, yn+1) → ∇H(y) for yn → y,
(1.1)

where H is a function of y (we will confine ourselves to a particular case where H is a Hamiltonian). We will consider only
symmetric discrete gradients, i.e., such that ∇̄H(yn, yn+1) = ∇̄H(yn+1, yn). Discrete gradients are highly non-unique. An
important special case of the average vector field discrete gradient (AVF) was introduced in [3]. Later, the AVF scheme was
identified as a B-series method [5], which prompted intensive studies on energy-preserving B-series methods [7–9].

In this paper we derive simple explicit formulas for the AVF discrete gradient for two important cases: the
Coulomb–Kepler problemand a three-dimensional anharmonic oscillator; see Section 2.We also propose two ‘‘locally exact’’
modifications of theAVFmethod: AVF–LEX andAVF–SLEX. They preserve the energy integral and havemuchhigher accuracy
than the original AVF scheme. Although suchmodifications can be constructed for anyHamiltonian and any discrete gradient
(see [10]), in this paper we focus on discrete gradient schemes for Hamiltonians of the form H =

1
2p

2
+ V (x); see Section 4.

More general results can be found in Section 5.
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A numerical scheme for solving an ordinary differential equation ẏ = F(y) is locally exact if there exists a sequence (ȳn)
such that the linearization of the scheme around ȳn is identical with the exact discretization of the differential equation
linearized around ȳn; see [11,12]. In this paper we consider two kinds of locally exact modifications: ȳn = yn (LEX) and
ȳn =

1
2 (yn + yn+1) (SLEX). Our approach consists in considering a class of non-standardmodifications of a numerical scheme

(compare [13]) parameterized by some functions (e.g., matrices denoted by δn). Requiring local exactness, we can determine
these functions (another possibility is proposed in [12,14]). We point out that any linear ordinary differential equation
with constant coefficients admits the exact discretization in an explicit form; see [15,16,13,17]. The exact discretization of
linearized equations is known as the exponential Euler method [18]. A similar notion (preservation of the linearization at
all fixed points) appeared in [4]; see also [19].

Locally exact modifications of the discrete gradient method for Hamiltonian systems were studied in [11,20,10,21,12].
Discrete gradient schemes were modified without changing their most important property: the exact conservation of the
energy integral. Locally exact modifications improve the accuracy (especially in the neighbourhood of a stable equilibrium)
although their order is not always higher. In the case of one degree of freedom the symmetric discrete gradient scheme
(of second order) has locally exact modifications of third (LEX) and fourth (SLEX) order, respectively [21,12]. In the
multidimensional case the order is usually unchanged; see [20]. The AVF method turns out to be an exception: locally
exact modifications, AVF–LEX and AVF–SLEX, are of third and fourth order, respectively. Numerical experiments confirm
the advantages of the proposed modifications; see Section 6. Locally exact modifications increase the accuracy by several
orders of magnitude.

2. The average vector field method

We consider a Hamiltonian system of the form

ẏ = F(y), F(y) = S∇H, S =


0 I
−I 0


(2.1)

where y ∈ R2m,H = H(y) is a Hamiltonian, and I is anm × m unit matrix. The average vector field method is defined by

yn+1 − yn
hn

=

 1

0
F(yn + ξ1yn)dξ, (2.2)

where hn is a variable time step and 1yn := yn+1 − yn. The AVF method exactly preserves the energy integral H , is a
symmetric B-series method of the second order, and is affine-covariant and self-adjoint [7].

We denote y = (x, p) = (x1, . . . , xm, p1, . . . , pm). In this paper we often confine ourselves to the case

H =
1
2
p2

+ V (x). (2.3)

Then

F(y) =


p

−Vx


≡


p1, . . . , pm, −

∂V
∂x1

, . . . ,−
∂V
∂xm

T

(2.4)

and the AVF method (2.2) can be rewritten as

xn+1 − xn
hn

=
pn + pn+1

2
,

pn+1 − pn

hn
=

 1

0
f (xn + ξ1xn)dξ, (2.5)

where f (x) := −Vx(x) and 1xn := xn+1 − xn. Therefore, it is natural to define the AVF discrete gradient as

∇̄
AVFV ≡ ∇̄

AVFV (xn, xn+1) := −

 1

0
f (xn + ξ1xn)dξ . (2.6)

In some special cases the integral defining the AVF discrete gradient can be explicitly calculated. We will consider the
important case of a spherically symmetric anharmonic oscillator and the Coulomb–Kepler potential.

Lemma 2.1. The AVF discrete gradient for an anharmonic oscillator potential V (r) = αr2−βr4 (where r = |x|) can be explicitly
computed by using the Simpson rule:

∇̄
AVFV = −

1
6


f (xn) + 4f


xn + xn+1

2


+ f (xn+1)


(2.7)

where f (x) = −Vx(x).
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