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a b s t r a c t

The IDRStab method is often more effective than the IDR(s) method and the BiCGstab(ℓ)
method for solving large nonsymmetric linear systems. IDRStab can have a large so-called
residual gap: the convergence of recursively computed residual norms does not coincide
with that of explicitly computed residual norms because of the influence of rounding
errors. We therefore propose an alternative recursion formula for updating the residuals to
narrow the residual gap. The formula requires extra matrix–vector multiplications, but we
reduce total computational costs by giving an alternative implementation which reduces
the number of vector updates. Numerical experiments show that the alternative recursion
formula reliably reduces the residual gap, and that our proposed variant of IDRStab is
effective for sparse linear systems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The IDR(s) method [1], which is based on the Induced Dimension Reduction (IDR) principle, has been proposed for
solving large nonsymmetric linear systems Ax = b, where A ∈ Cn×n and b ∈ Cn. IDR(1) is mathematically equivalent
to the Bi-Conjugate Gradient STABilized (BiCGSTAB) method [2]; IDR(s) with s > 1 can be considered as BiCGSTAB with an
s-dimensional initial shadow residual [3,4].

IDR(s) uses stabilizing polynomials of degree one as are used in BiCGSTAB. Real stabilizing polynomials of degree one
often cause numerical instabilities if A ∈ Rn×n has large non-real eigenvalues close to the imaginary axis. To overcome
this problem, the GBi-CGSTAB(s, L) method [4] and the IDRstab method [5] have independently been developed.1 These
algorithms combine IDR(s) with higher order stabilizing polynomials. IDRStab with s = 1 is mathematically equivalent to
the BiCGstab(ℓ)method [7], and in the case of ℓ = 1, it simplifies to IDR(s). Although GBi-CGSTAB(s, L) and IDRstab differ in
the implementation, they are mathematically equivalent. In this paper, we focus specifically on an IDRstab implementation.

For all Krylov subspace methods in finite precision arithmetic that do not compute the residuals as rk = b − Axk but
use some recursion formula, the residual gap is defined as the difference between the recursively computed residual rk and
the explicitly computed residual (referred to as true residual) b − Axk. The residual gap will most probably be non-zero
because of rounding errors. A large residual gap almost certainly affects the ultimately attainable accuracy in such amanner
that it is not possible to compute an approximate solution xk that has a high tolerance. The large intermediate residual and
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1 The convention to call all these methods ‘‘IDRStab’’ has been suggested in [6].
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approximation norms are known to affect the ultimately attainable accuracy [8,9,14]. For improving the attainable accuracy,
it has been proposed in [8] that the approximations and residuals are updated by an alternative formula in which groups
of updates for the approximations and residuals are cumulated strategically. This is referred to as a strategy of group-wise
update, and we briefly explain it in the Appendix. The influence of rounding errors, which arise from the matrix–vector
multiplications, on the residual gap has been analyzed in [10].

The number of matrix–vector multiplications (MVs) required for successful convergence of IDRstab is often less than
those of IDR(s) and BiCGstab(ℓ), but IDRstab sometimes has a large residual gap. In this paper, we introduce an alternative
recursion formula for updating the residuals to reduce the residual gap. The formulation reliably reduces the residual gap,
but requires some extra MVs. In order to reduce the total computational costs, we give an alternative implementation of
IDRstab in which the number of vector updates is reduced.

Numerical experiments demonstrate that the residual gap of our proposed variant is small compared with that of the
original IDRstab variant. To understand why the residual gap can be narrowed, the reliability of the alternative recursion
formula for updating the residuals is investigated by numerical experiments. We reveal the difference between the original
IDRstab and our proposed variant using the strategy of group-wise update described in the Appendix.

This paper is organized as follows. The original IDRstab method is described in the next section. In Section 3, we derive
an alternative implementation of IDRstab. In Section 4, we discuss the reliability of the alternative recursion formula for
avoiding a large residual gap. Numerical experiments demonstrate that our proposed variant is effective for sparse linear
systems in Section 5. We also derive the algorithm of our variant with preconditioning and present some numerical results.
Concluding remarks are given in Section 6. In the Appendix, we present some numerical experiments to examine the effects
of the strategy of group-wise update.

2. IDRstab method

We here describe an outline of the original IDRstabmethod [5]. The kth residual rk of an IDR-typemethod is generated in
a subspace Gk. The subspaces Gk are defined by G0 ≡ Kn(A, r0) and Gk+1 ≡ (I − ωk+1A)(Gk ∩ R̃⊥

0 ) for k = 0, 1, . . . , where
Kn(A, r0) is the full Krylov subspace generated by A and an initial residual r0 ≡ b − Ax0, R̃⊥

0 is the orthogonal complement
of the range of a fixed n × s matrix R̃0, and ωk’s are nonzero scalars. The dimension of Gk shrinks with increasing k, by the
IDR theorem [1,3,5].

The residual rk ∈ Gk of IDRstab is updated to the next residual rk+ℓ ∈ Gk+ℓ, where the integer k is a multiple of ℓ. The
process of updating rk to rk+ℓ is referred to as one cycle of IDRstab. One cycle consists of ℓ + 1 steps of two different types:
ℓ IDR steps and one polynomial step.

2.1. The IDR step

Suppose that we have an approximation xk and the corresponding residual rk ∈ Gk (referred to as the primary residual),
plus the n× smatrices Uk and AUk with columns also in Gk. Before performing the polynomial step, the IDR step is repeated
ℓ times by using the projections Π

(j)
i for i = 0, 1, . . . , j, j = 1, 2, . . . , ℓ which are defined by Π

(j)
i ≡ I − AiU (j−1)

k σ−1
j R̃∗

0A
j−i

with σj ≡ R̃∗

0A
jU (j−1)

k . Here, R̃∗

0 denotes the conjugate transpose of R̃0, and the superscript ‘‘(j)’’ denotes the jth repetition.
Suppose that an approximation x(j−1)

k and the corresponding residual r(j−1)
k , plus the vectorsAir(j−1)

k for i = 1, 2, . . . , j−1,
and the n× smatrices AiU (j−1)

k for i = 0, 1, . . . , j, are generated at the (j− 1)st (j ≤ ℓ) repetition, where x(0)
k ≡ xk, r

(0)
k ≡ rk

and U (0)
k ≡ Uk. The jth repetition is performed as follows. The residual r(j)

k (referred to as a secondary residual) is obtained
by the vector update

r(j)
k ≡ Π

(j)
1 r(j−1)

k = r(j−1)
k − AU (j−1)

k α⃗(j) (1)

with the computation of α⃗(j)
≡ σ−1

j (R̃∗

0A
j−1r(j−1)

k ), and the associated approximation x(j)
k is expressed by x(j)

k = x(j−1)
k +

U (j−1)
k α⃗(j). For i = 1, 2, . . . , j − 1, since Ai+1U (j−1)

k are available, the vectors Air(j)
k are also obtained by vector updates

Air(j)
k ≡ Π

(j)
i+1A

ir(j−1)
k = Air(j−1)

k − Ai+1U (j−1)
k α⃗(j). (2)

The vector Ajr(j)
k is obtained by multiplying Aj−1r(j)

k by A. The matrices AiU (j−1)
k are updated to AiU (j)

k for i = 0, 1, . . . , j
such that the columns of AjU (j)

k form a set of bases for the subspace Ks(Π
(j)
j A, Π

(j)
j Ajr(j)

k ). The first columns AiU (j)
k e1 for

i = 0, 1, . . . , j are obtained by vector updates

AiU (j)
k e1 ≡ Π

(j)
i Air(j)

k = Air(j)
k − AiU (j−1)

k β⃗
(j)
1 (3)

with the computation of β⃗(j)
1 ≡ σ−1

j ρ⃗
(j)
1 and ρ⃗

(j)
1 ≡ R̃∗

0A
jr(j)

k . For some q < s, the vector c(j)
q ≡ A(AjU (j)

k eq) is computed as the

qth column of Aj+1U (j)
k by an explicit multiplication by A; after that, the (q + 1)st columns AiU (j)

k eq+1 for i = 0, 1, . . . , j can
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