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a b s t r a c t

Standardmodel order reduction techniques attempt to build reduced ordermodels of large
scale systems with similar input–output behavior over a wide range of input frequencies
as the full system models. The method known as the dominant pole algorithm has previ-
ously been successfully used in combination withmodel order reduction techniques to ap-
proximate standard linear time-invariant dynamical systems and second order dynamical
systems as well as nonlinear time-delay systems. In this paper, we show that the dominant
pole algorithmcanbe adapted for parametric systemswhere these parameters usually have
physical meaning. There are two approaches for finding dominant poles. These algorithms
are illustrated by the second order numerical examples.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider the single-input–single-output system, formulated in the Laplace or frequency domain, as follows:
A(s)x(s) = bu(s)
y(s) = c∗x(s) (1)

where A(s) is an n×nmatrix with large n. Function u(s) is the input and y(s) the output. Vector x(s) is called the state vector.
Matrix A is a function of s and is linear, e.g., A(s) = sE − A0, for linear systems of ODEs, or quadratic, e.g., A(s) = K + s2M
or A(s) = K + sC + s2M , for the analysis of vibrations or even nonlinear as, e.g., A(s) = s2M(s) + sC(s) + K(s) or the delay
differential equation, where A(s) = sE − A0 + e−τ sA1 and τ is the delay.

In applications arising from PDEs and large systems of ODEs, the solution of the original system is expensive although
matrices are sparse. The reducedmodel is of small dimension but dense. There are numerous examples that show significant
speed up by model reduction [1]. There are situations where the computation and evaluation of the reduced model do not
lead to a speedup; these applications are not considered in this paper.

The model should be built so that the output of the reduced model and the original one are close. There are basically
three classes of MOR methods. Moment matching or Padé type methods are very popular in circuit design and vibrations
[2–4]. They match high order moments around a central point or a selection of points. Krylov methods and rational Krylov
methods belong to this class ofmethods. Balanced truncationmethods are usuallymore expensive, but build smallermodels
for the same error level as Krylov–Padé methods. There are various algorithms for large scale problems, based on rational
Krylov spaces [2,5–7].
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Finally, modal approximation is very popular in the study of vibrations, but also for the reduction of models of power
lines [8–10]. The dominant pole algorithmmethod approximates the solution as a sum of linear rational functions of which
the poles are eigenvalues of the system. The dominant pole algorithm with subspace projection [9,11] is related to the
Jacobi–Davidson method for computing eigenvalue problems. We discuss it in more detail in Section 2. There are variants
for polynomial [12] and nonlinear problems [13].

In our case, y does not only depend on s but also on parameters, which we denote by γ = (γ1, . . . , γp) ∈ Γ ⊂ Rp, that
arise in A, b or c. These parameters usually have a direct physical meaning. Such parametric studies appear in uncertainty
quantification [14,15] or design optimization [1]. These applications solve (1) for hundreds or thousands of different com-
binations of s and γ . It is this cost that should be reduced dramatically. The classical approach is to build a reduced model
for each value of γ ∈ Γ for which the system is evaluated. This is probably highly inefficient since these systems are built
independently. Parametric model order reduction, on the other hand, allows for cheaply evaluating y(s, γ ) for a wide range
of values of γ . Padé type methods such as PIMTAP [16–18] and TAP [16] build reduced models whose output matches mul-
tivariate moments with the exact output function. Interpolatory reduced models [19] are built by interpolating subspaces
generated at a selection of interpolation points in the parameter space. The reduced model is obtained by merging these
subspaces and using them for evaluating the system output in other than the interpolation points [20].

In this paper, we will iteratively compute the k parametric dominant poles. We consider two approaches. In the first
approach, we compute the parameter dependent poles one by one, i.e., all parameters are taken into account together. We
will use interpolation in the parameter space to achieve this. In the second approach, the dominant eigenpairs are computed
for a selection of interpolation points in the parameter space, independently from each other. As for the iterative rational
Krylov algorithm [20] and Krylov–Padé methods [1], the transfer function is Hermite interpolated in the iteration points
in the Laplace domain and the parameter domain. Related work can be found in [21]. The dominant pole algorithm was
modified for finding the most sensitive pole of a parametric system. In this paper, we look at quite a different angle in that
we compute dominant poles for the entire parameter space, which are not necessarily the most sensitive poles. We indeed
noticed that for themodels in the numerical examples, the sensitivity increases with the frequency, where usually, themost
dominant poles are the poles with lowest frequency.

The paper is organized as follows. In Section 2 the dominant pole algorithm for nonparametric problems is reviewed.
Section 3 introduces the dominant pole algorithm adapted for the parametric case. Numerical examples are shown in
Section 4 and the conclusions are given in Section 5.

2. The dominant pole algorithm

The transfer function of system (1), H : C → C, is defined as

H(s) = c∗A(s)−1b.

The poles of the system (1) are the poles of H(s). These form a subset of the eigenvalues λ ∈ C. Define an eigentriplet
(λj, xj, yj) of A(s) as:

A(λj)xj = 0 xj ≠ 0
A(λj)

∗yj = 0 yj ≠ 0 (2)

where λj is an eigenvalue and xj, yj ∈ C are corresponding right and left eigenvectors. Note that the number of eigentriplets
depends on the type of problem: when A(s) = K + s2M withM symmetric positive definite and K symmetric, then there are
n linearly independent right eigenvectorswith associatedλ2

j value.When A(s) = K+sC+s2M , then there are 2n eigenvalues
λj and if A(s) originates from the delay differential equation then the system has an infinite number of eigenvalues.

The Dominant Pole Algorithm (DPA) computes ‘dominant poles’ of the system. We now explain this concept and how a
reduced model is built from those. We assume the transfer function H(s) can be expressed as

H(s) =


j

Rj

s − λj
,

where the sum is taken over all eigenvalues and where

Rj =


c∗xj

 
y∗

j b


y∗

j
dA(λj)

dλj
xj

is called the residue [22,23]. The weighted residue is defined as

ρj =
|Rj|

|Re(λj)|
.

The poles are sorted following decreasing weighted residue, i.e.,

ρ1 ≥ ρ2 ≥ ρ3 ≥ · · · ≥ ρk.
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