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Computing all eigenvalues of a modest size matrix typically proceeds in two phases. In
the first phase, the matrix is transformed to a suitable condensed matrix format, sharing
the eigenvalues, and in the second stage the eigenvalues of this condensed matrix are
computed. The main purpose of this intermediate matrix is saving valuable computing
time. Important subclasses of normal matrices, such as the Hermitian, skew-Hermitian
and unitary matrices admit a condensed matrix represented by only @(n) parameters,
allowing subsequent low-cost algorithms to compute their eigenvalues. Unfortunately,
such a condensed format does not exist for a generic normal matrix.

We will show, under modest constraints, that normal matrices also admit a memory
cheap intermediate matrix of tridiagonal complex symmetric form. Moreover, we will

propose a general approach for computing the eigenvalues of a normal matrix, exploiting
thereby the normal complex symmetric structure. An analysis of the computational cost
and numerical experiments with respect to the accuracy of the approach are enclosed. In
the second part of the manuscript we will investigate the case of nonsimple singular values
and propose a theoretical framework for retrieving the eigenvalues. We will, however, also
highlight some numerical difficulties inherent to this approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Most of the so-called direct eigenvalue methods are based on a two step approach. First the original matrix is transformed
to a suitable shape taking © (n®) operations, followed by the core method computing the eigenvalues of this suitable shape,
e.g., divide-and-conquer, MRRR, QR-methods [ 1-3]. Consider, e.g., the QR-method; starting with an arbitrary unstructured
matrix, one first performs a unitary similarity transformation to obtain a Hessenberg matrix in @(n®) operations. Next,
successive QR-steps, which cost @ (n?) each, are performed until all eigenvalues are revealed.

For some subclasses of normal matrices, e.g., Hermitian, skew-Hermitian, and unitary matrices, the intermediate matrix
shapes admit a low storage cost @ (n) and, as such, permit the design of QR-algorithms with linear complexity steps
[2,4,5]. Unfortunately, for the generic normal matrix class, the intermediate structure is of Hessenberg form, requiring
O (n?) storage and resulting in a quadratic cost for each QR-step. An alternative intermediate condensed form might thus
result in significant computational savings. To achieve this goal we propose the use of intermediate complex symmetric
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matrices that can be constructed using unitary similarities. The problem of determining whether a square complex matrix
is unitarily similar to a complex symmetric one has been intensively studied; see, for instance, [6-8]. Such a similarity
always exists for normal matrices [9, Corollary 4.4.4]. One method to perform the unitary transformation of a normal matrix
to complex symmetric form was proposed by Ikramov in [10]. It utilizes the Toeplitz decomposition of the normal matrix
and symmetries at the same time the two Hermitian terms.

The aim of this article is to provide an initial theoretical basis on which we can continue to build numerical algorithms.
Again we rely on the two-step principle: First, the matrix is transformed by a unitary similarity transformation to block
matrix form, of which the diagonal blocks are complex symmetric. In the simplest case only one block exists [11], and
well-known techniques [12-14] can be used to compute the symmetric singular value decomposition (SSVD), also called
Autonne-Takagi factorization [15,9], of this complex symmetric matrix. Based on the SSVD one can retrieve the eigenvalue
decomposition. When multiple blocks are present, it is possible to use the same techniques and diagonalize all blocks at once,
obtaining a sparse matrix with all blocks diagonal. After that, a specifically designed version of the Jacobi method for normal
matrices [16-18] is used, in order to annihilate the last nonzero off-diagonal entries. Numerical experiments illustrate
the effectiveness of the proposed method. Whenever the number of block exceeds one, it will be shown, however, that
severe numerical difficulties can appear. More precisely, many articles and authors rely on the property that an irreducible
Hermitian tridiagonal matrix cannot have coinciding eigenvalues. Though theoretically correct, this statement might fail in
a numerical setting, with nonnegligible impact on the accuracy of the proposed methods (see Section 6 or the discussion
in [3, Section 5.45]).

In this article, the following notation is used: AT refers to the transpose of A, A to the conjugate of A and A" = A’ denotes
the Hermitian conjugate. With A(i : j, ¢ : k) the submatrix of a matrix A consisting of rows i up to and including j and
columns ¢ up to and including k is depicted. With a; we refer to the i-th column of A. A matrix is said to be symmetric if
A = AT and Hermitian if A = AY. A matrix is real orthogonal if AAT = ATA = I and A is real, and unitary if AA" = APA = I.
We might use the expressions real and complex symmetric to stress that the symmetric matrix is real or possibly complex.
The elements of a matrix A are denoted by a;;, when taking subblocks out of a partitioned matrix, we refer to them as A,.
The square root of —1 is denoted by 1.

The article is organized in two main parts. One part of the article discusses the easy setting in which the intermediate
matrix is of complex symmetric form. The second part of the article presents a theoretical approach to deal with the
block form, and discusses possible numerical issues. Section 2 recapitulates some known results on normal matrices,
the singular value decomposition and results from [11]. In Section 3, under some constraints, the theoretical setting for
eigenvalue computations of normal matrices whose distinct eigenvalues have distinct absolute values is considered. The
unitary similarity transformation as well as the link with the SSVD is presented to reveal the eigenvalues. Section 4 supports
the theoretical discussion by numerical experiments. In Section 5 the generic nonsingular case, is investigated. The similarity
transformation will now result in a block structured matrix, which can be diagonalized efficiently. The eigenvalues of this
latter sparse block matrix are then computed via a Jacobi-like diagonalization procedure. In Section 6 some numerical
experiments and observations with respect to the latter structure are presented. We also compare the performance of our
method with that of [ 10] in relation to different distributions of eigenvalues and singular values: we show that both methods
can suffer from discrepancies between their theoretical and practical behavior.

2. Preliminaries

This section highlights some essential properties of normal matrices, the singular value decomposition, and some other
results required in the remainder of the text.

A singular value decomposition of A is a factorization of the form A = UXVH, where U, V are unitary matrices, and X
is a diagonal matrix with nonnegative real entries o7, . . ., 0, we write ¥ = diag (oy, ..., 0,). The diagonal elements of X
are called the singular values of A and the columns of U and V are called the left and right singular vectors respectively. A
singular value o; is said to be a multiple singular value if it appears more than once on the diagonal of X. A standard choice
consists of ordering the singular values such that o7 > --- > o, [1]. We will implicitly assume that every singular value
decomposition in this article has this conventional form, except when stated otherwise, and we will stress this by naming
it an unordered singular value decomposition. It is well-known that the singular value decomposition for a matrix with n
distinct singular values is essentially unique [1], which signifies unique up to unimodular scaling. The unordered version is
also unique up to permutations of the diagonal element as long as the singular values are unique.

Suppose that the matrix has singular values of multiplicities exceeding one, so that uniqueness is lost. One then still has
uniqueness of the subspaces associated with equal singular values, as given by the following theorem.

Lemma 1 (Autonne’s Uniqueness Theorem, Theorem 2.6.5 in [9]). Let A € C™" and let A = UXVH = WXZ" be two,
gossibly diftingt, singular value decompositions. Thenfhere exist unitary block diagonal matrices B = diag(By, By, ..., By) and
B = diag(By, B,, ..., By), such that U = WB, V = ZB and B; = B; whenever the associated singular value differs from zero.

In general, given a matrix A € C"™" and a singular value decomposition A = UXV" we have that AA" = UX?U" and
AHA = V 22VH are eigenvalue decompositions of AA" and AP A respectively, having orthonormal eigenvectors. If A € C™"
is normal, then AA" = A A, so the columns of U and V both form a basis of C", made out of eigenvectors of the same matrix.
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