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a b s t r a c t

In this paper, we propose a pseudospectral method for solving the Thomas–Fermi equa-
tionwhich is a nonlinear singular ordinary differential equation on a semi-infinite interval.
This approach is based on the rational second kind Chebyshev pseudospectral method that
is indeed a combination of tau and collocation methods. This method reduces the solution
of this problem to the solution of a system of algebraic equations. The slope at origin is
provided with high accuracy. Comparison with some numerical solutions shows that the
present solution is effective and highly accurate.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Anumber of problems arising in science and engineering are set in semi-infinite domains.We can apply different spectral
methods that are used to solve problems in semi-infinite domains. The first approach is using Laguerre or Hermite polyno-
mials [1–5]. The second approach is replacing the semi-infinite domain with [0, L] interval by choosing L, sufficiently large.
This method is named domain truncation [6,7]. The third approach is reformulating original problem in the semi-infinite
domain to singular problem in the bounded domain by variable transformation and then using the Jacobi polynomials to
approximate the resulting singular problem [8–12]. The fourth approach of the spectral method is based on rational orthog-
onal functions. Boyd [13,14] defined a new spectral basis, named rational Chebyshev functions on the semi-infinite interval,
by mapping to the Chebyshev polynomials. Guo et al. [15] introduced a new set of rational Legendre functions which are
mutually orthogonal in L2(0, +∞). They applied a spectral scheme using the rational Legendre functions for solving the
Korteweg–de Vries equation on the half line. Boyd et al. [16] applied pseudospectral methods on a semi-infinite interval
and compared rational Chebyshev, Laguerre and mapped Fourier sine.

The authors of [17–19] applied the spectral method to solve nonlinear ordinary differential equations on semi-infinite
intervals. Their approachwas based on a rational Taumethod. They obtained the operationalmatrices of derivative andprod-
uct of rational Chebyshev and Legendre functions and then they applied these matrices together with the Taumethod to re-
duce the solution of these problems to the solution of the system of algebraic equations. Furthermore, the authors of [20,21]
introduced the rational second and third kind Chebyshev tau method for solving the Lane–Emden equation and Volterra’s
populationmodel as nonlinear differential equations over the infinite interval. In [22], rational second kind Chebyshev bases
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and Galerkin method are used to obtain the approximate solution of a system of high-order integro-differential equations
on the semi-infinite interval.

One of the most important nonlinear singular ordinary differential equations that occurs in a semi-infinite interval is the
Thomas–Fermi equation, as follows [23,24]:

d2y
dx2

=
1

√
x
y

3
2 (x), x > 0, (1)

which appears in the problem of determining the effective nuclear charge in heavy atoms. Boundary conditions for this
equation are as follows:

y(0) = 1, lim
x→∞

y(x) = 0. (2)

The Thomas–Fermi equation is useful for calculating form factors and for obtaining effective potentials which can be
used as initial trial potentials in self-consistent field calculations. For an understanding of the early developments of the
Thomas–Fermi equation, we refer the reader to see the review [25], which especially pointed out the considerable contri-
butions to this field made by Fermi and Majorana.

The Thomas–Fermi problemhas been solvedbydifferent techniques. The authors of [26–28] used aperturbative approach
to determine analytic solutions for the Thomas–Fermi equation. Bender et al. [26] replaced the right-hand side of this

equation by one which contains the parameter δ, i.e., y′′(x) = y(x)


y(x)
x

δ

; the potential is then expanded in a power
series in δ

y = y0 + δy1 + δ2y2 + δ3y3 + · · · . (3)

This procedure reduced Eq. (1) into a set of linear equations with associated boundary conditions. Laurenzi [27] applied a
perturbativemethod by combining itwith an alternate choice of the nonlinear termof Eq. (1) to produce a rapidly converging
analytic solution. Cedillo [28]wrote Eq. (1) in terms of density and then the δ-expansionwas employed to obtain an absolute
converging series of equations. Adomian [29] applied the decomposition method for solving the Thomas–Fermi equation
and then Wazwaz [30] proposed a non-perturbative approximate solution to this equation by using the modified decom-
position method in a direct manner without any need to a perturbative expansion or restrictive assumptions. He combined
the series obtained with the Padé approximation which provided a promising tool to handle problems on an unbounded
domain. Liao [31] solved the Thomas–Fermi equation by the homotopy analysis method. This method provided a conve-
nient way to control the convergence of approximation series and adjusted convergence regions when necessary, which
was a fundamental qualitative difference in analysis between the homotopy analysis method and all other reported ana-
lytic techniques. Khan [32] used the homotopy analysis method with a new and better transformation which improved the
results in comparison with Liao’s work. In [33], the quasilinearization approach was applied for solving Eq. (1). This method
approximated the solution of a nonlinear differential equation by treating the nonlinear terms as a perturbation about the
linear ones, and unlike perturbation theories it is not based on the existence of some kind of a small parameter. Ramos [34]
presented two piecewise quasilinearization methods for the numerical solution of Eq. (1). Both methods were based on
the piecewise linearization of ordinary differential equations. The first method (C1-linearization) provided global smooth
solutions, whereas the second one (C0-linearization) provided continuous solutions. Yao [34] solved the Thomas–Fermi
equation by an analytic technique named the homotopy analysis method with a more generalized set of basis function, and
consequential auxiliary linear operator was introduced to provide a series solution. Zhu et al. [35] approximated the original
Thomas–Fermi equation by a nonlinear free boundary value problem. They then used an iterative method to solve the free
boundary value problem. Parand et al. [36] investigated the Sinc-collocation method on the half-line for solving Eq. (1) by
using Sinc functions. Similar, for a singular boundary-value problem we refer to.

In this paper, we introduce a combination of tau and pseudospectral methods based on rational second kind Chebyshev
(RSC) functions. The proposedmethod requires the definition of RSC functions, operational matrix of derivative and rational
second kind Chebyshev–Gauss collocation points andweights. The application of themethod to the Thomas–Fermi equation
leads to a nonlinear algebraic system. We employed this method to the Thomas–Fermi equation because first, it is easy to
apply and numerically achieve spectral convergence; second, because of singularity in this equation this method can handle
this problem; and third, the limit of the RSC functions at infinity is computable and thus the boundary conditions at infinity
can easily be handled.

This paper is arranged as follows: in Section 2, we describe the formulation and some properties of rational second kind
Chebyshev functions required for our subsequent development. Section 3 summarizes the application of this method for
solving the Thomas–Fermi equation and a comparison is made with existing methods in the literature. The conclusions are
described in the final section.

2. Properties of RSC functions

In this section,we present someproperties of rational second kind Chebyshev functions and introduce the rational second
kind Chebyshev pseudospectral approach.
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